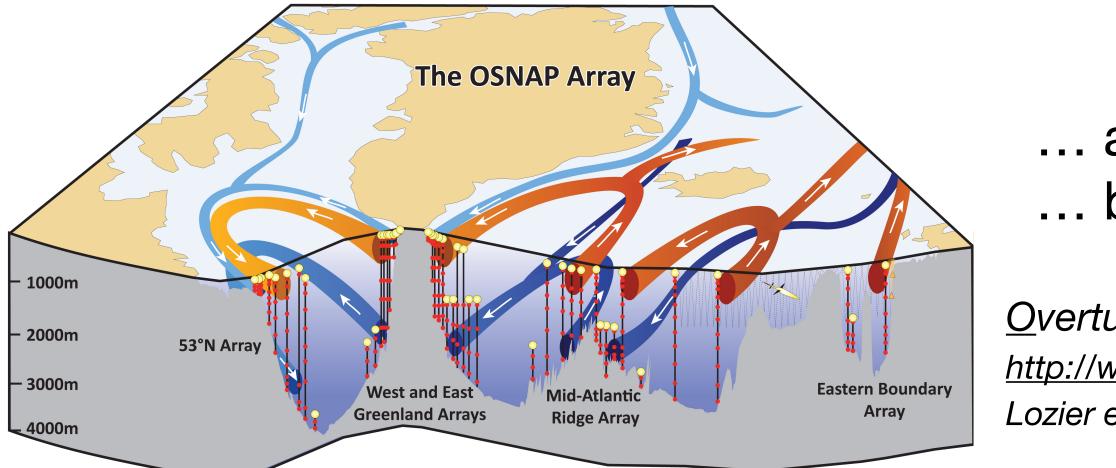


DESIGN OF AN OCEAN CLIMATE OBSERVING NETWORK IN THE SUBPOLAR NORTH ATLANTIC VIA HESSIAN UNCERTAINTY QUANTIFICATION

Nora Loose, University of Colorado, Boulder Helen Pillar & Patrick Heimbach, University of Texas at Austin

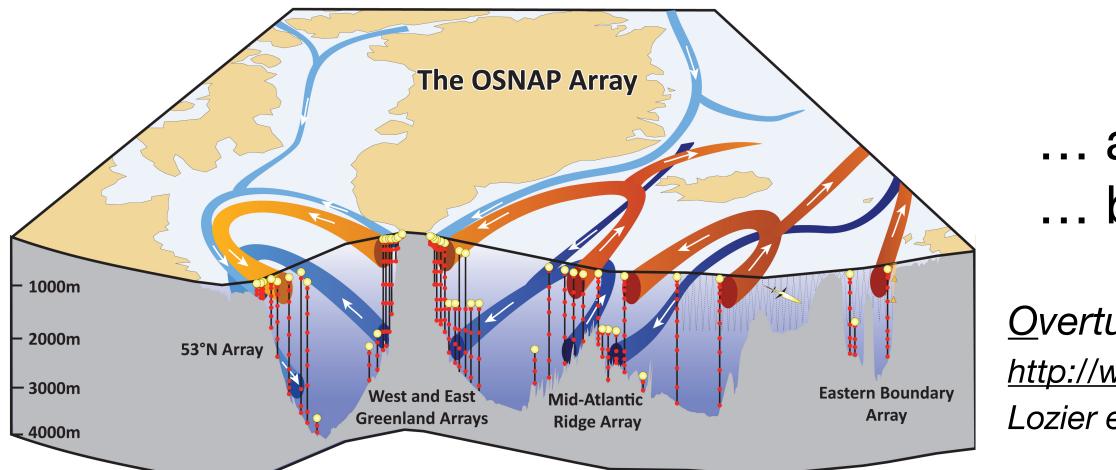
Ocean Observing Systems



... are crucial for understanding the ocean's role in climate ... but are difficult & expensive to build and maintain

<u>Overturning in the Subpolar North Atlantic Program (OSNAP)</u> http://www.o-snap.org (since Fall 2014) Lozier et al., Science (2019)

Ocean Observing Systems

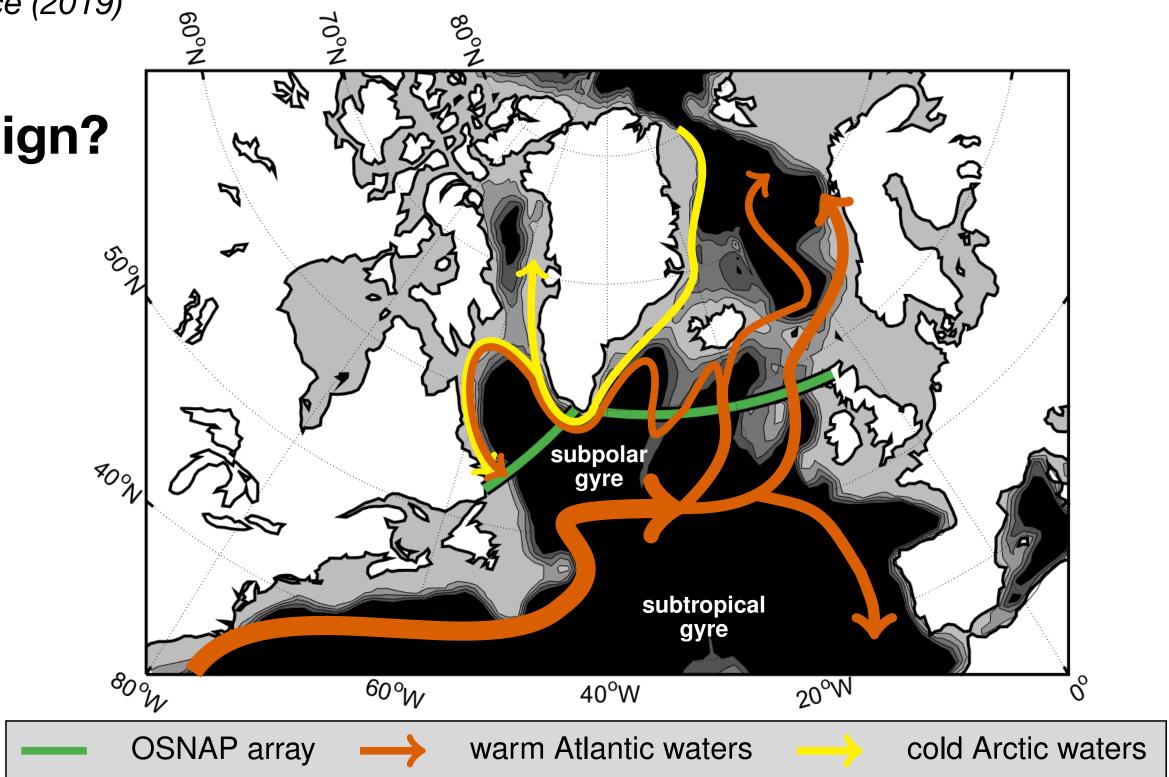


How can ocean models inform observing system design?

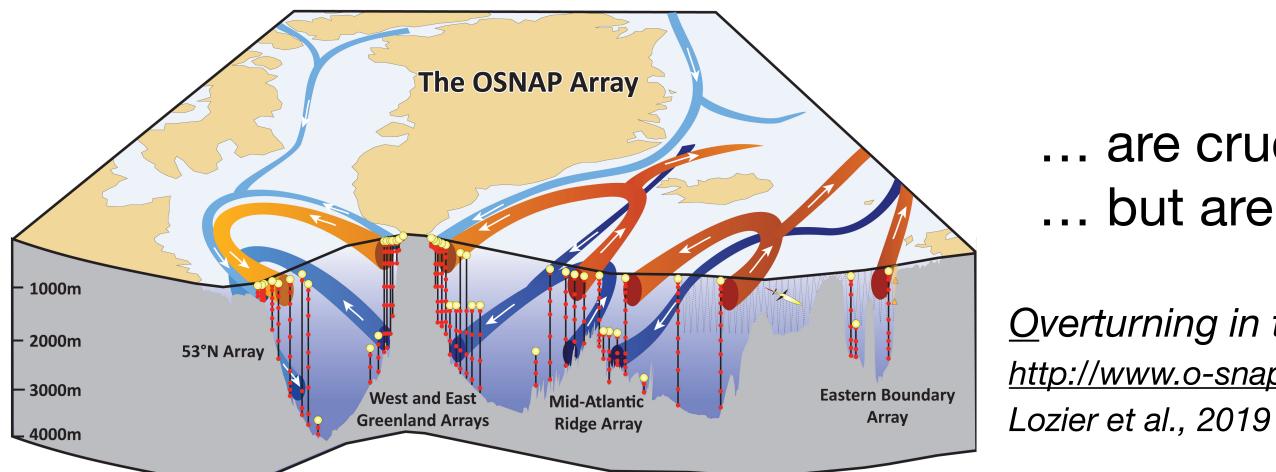
... are crucial for understanding the ocean's role in climate ... but are difficult & expensive to build and maintain

<u>Overturning in the Subpolar North Atlantic Program (OSNAP)</u> http://www.o-snap.org (since Fall 2014)

Lozier et al., Science (2019)



Ocean Observing Systems



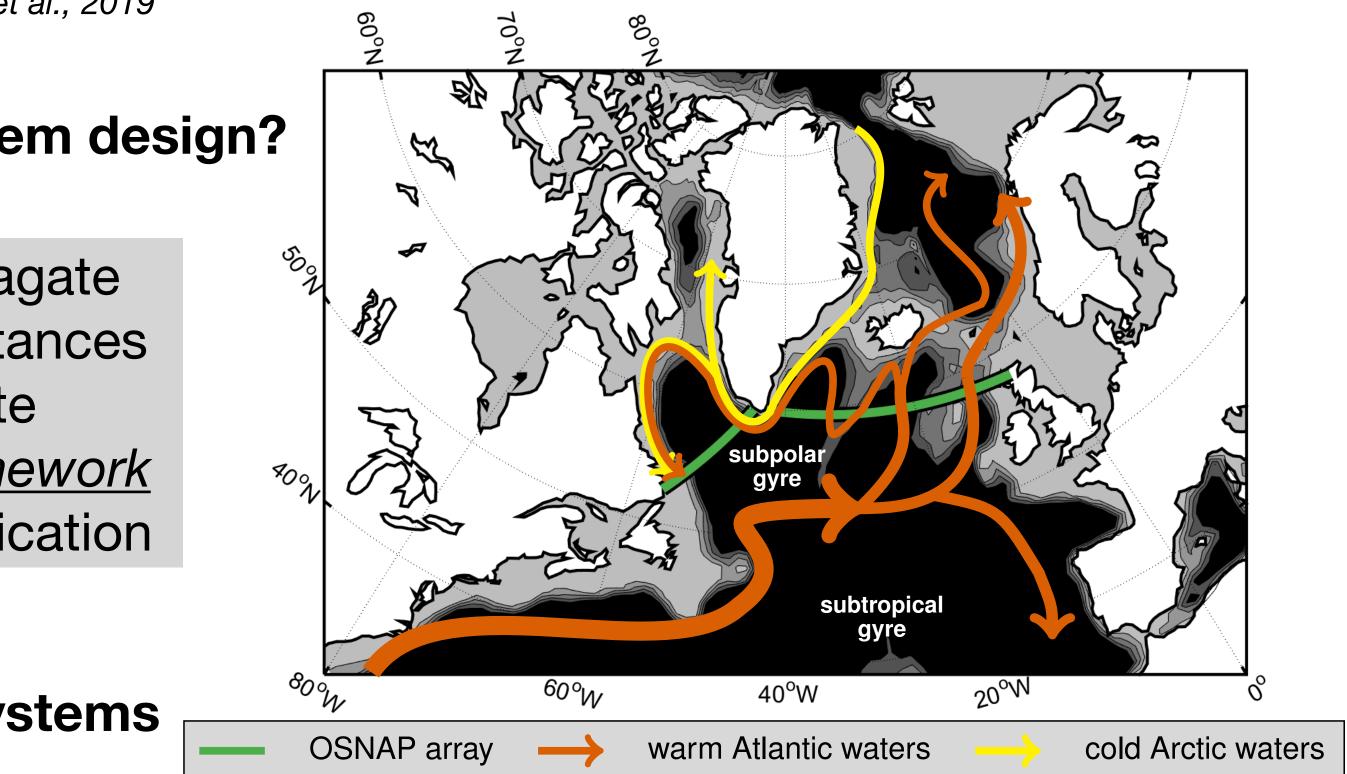
How can ocean models inform observing system design?

- Idea: Use <u>oceanic teleconnections</u> that propagate observational constraints over long distances and can be exposed via the adjoint state
 - Combine <u>adjoint-based estimation framework</u> with *Hessian-based* uncertainty quantification

Quantitative design of ocean observing systems

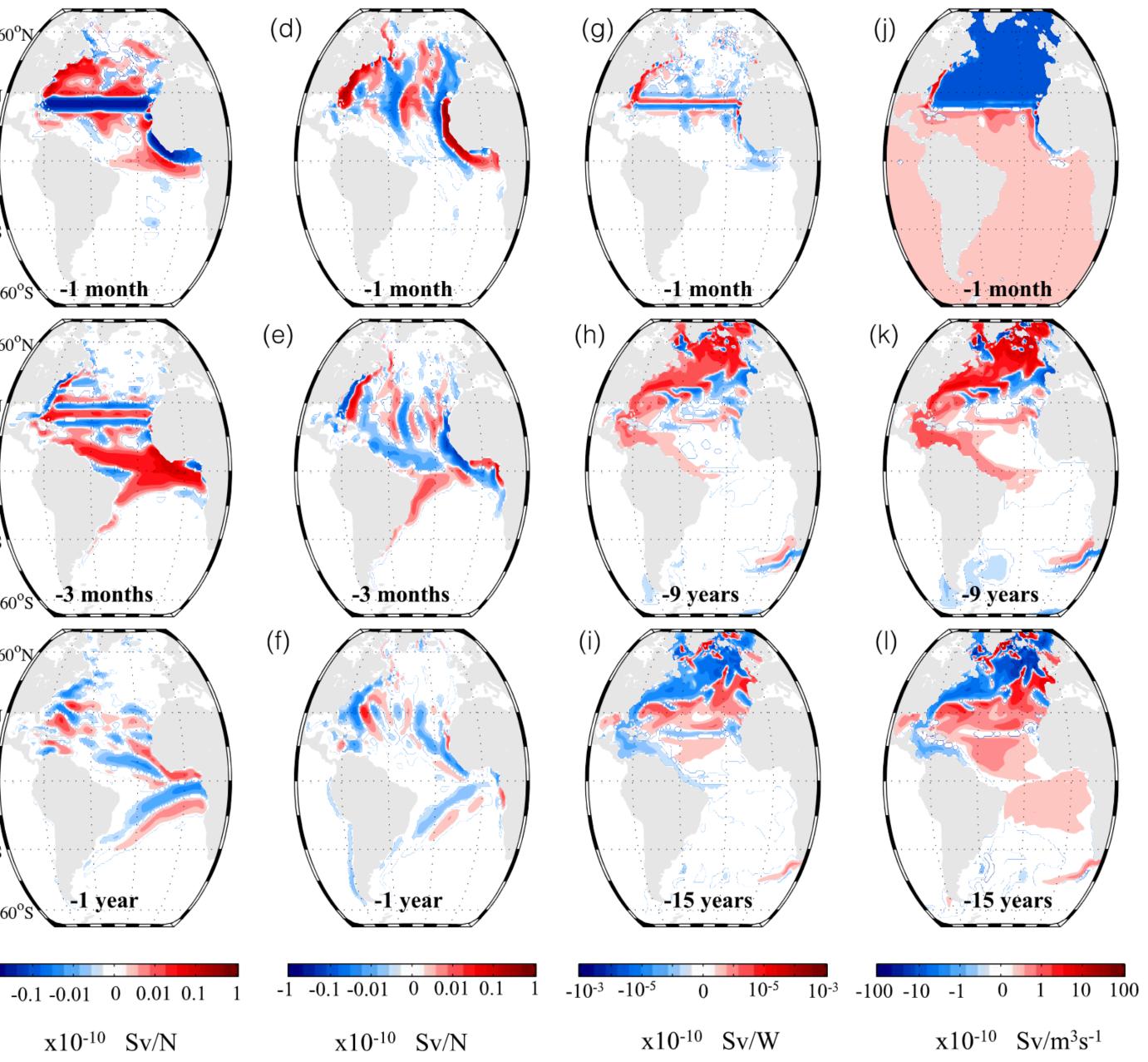
... are crucial for understanding the ocean's role in climate ... but are difficult & expensive to build and maintain

<u>Overturning in the Subpolar North Atlantic Program (OSNAP)</u> http://www.o-snap.org



Oceanic teleconnections

(a) *linear adjustment processes:* oceanic Kelvin & Rossby waves exposed by the adjoint state as (b) "time-reversed" waves, reflecting the <u>sensitivity of a</u> Quantity of Interest (QoI) to *perturbations*, (here: volume $30^{\circ}S$ transport across 26N) (C) back in time, and anywhere in space Johnson & Marshall, J.Phys. Oceanogr. (2002) Heimbach et al. Deep Sea Res. (2011) Pillar et al., J. Clim. (2016)

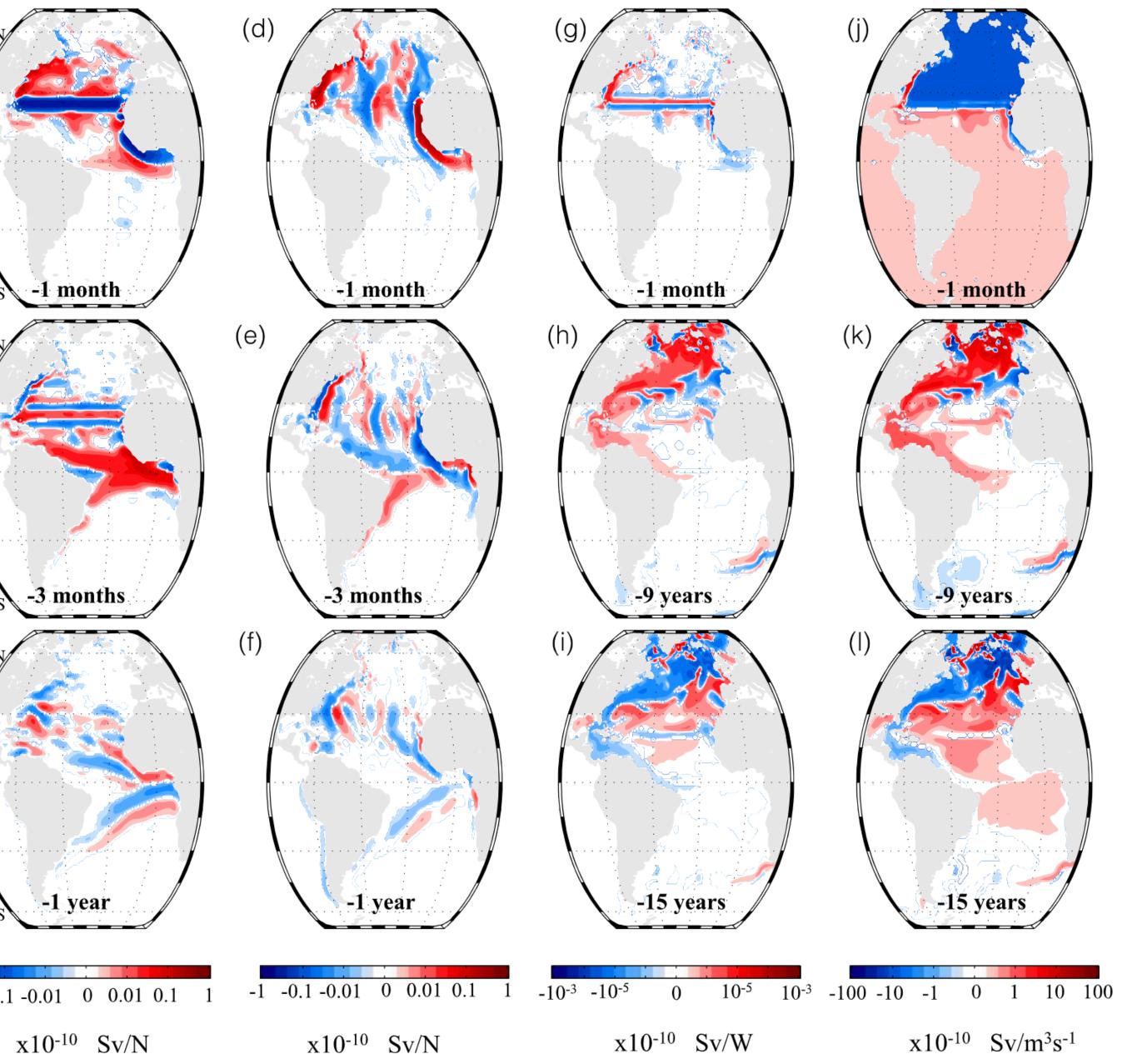


Oceanic teleconnections

$$\begin{aligned} \text{Iinear adjustment processes:} \\ \mu_{0} &= \frac{\partial J}{\partial x_{0}} = \sum_{1 \leq t \leq t_{r}} \frac{\partial x_{t}}{\partial x_{0}} \left(\frac{\partial J}{\partial x_{t}} \right) \\ &= \frac{\partial x_{1}}{\partial x_{0}} \left(\frac{\partial J}{\partial x_{1}} \right) + \frac{\partial x_{1}}{\partial x_{0}} \frac{\partial x_{2}}{\partial x_{1}} \left(\frac{\partial J}{\partial x_{2}} \right) \\ &+ \dots + \frac{\partial x_{1}}{\partial x_{0}} \cdots \frac{\partial x_{t_{r}}}{\partial x_{t_{r}-1}} \left(\frac{\partial J}{\partial x_{t_{r}}} \right) \\ &= \mathsf{L}^{\mathsf{T}} \frac{\partial J}{\partial x_{1}} + \mathsf{L}^{\mathsf{T}} \mathsf{L}^{\mathsf{T}} \frac{\partial J}{\partial x_{2}} + \dots + \mathsf{L}^{\mathsf{T}} \cdots \mathsf{L}^{\mathsf{T}} \frac{\partial J}{\partial x_{t_{r}}} \end{aligned}$$

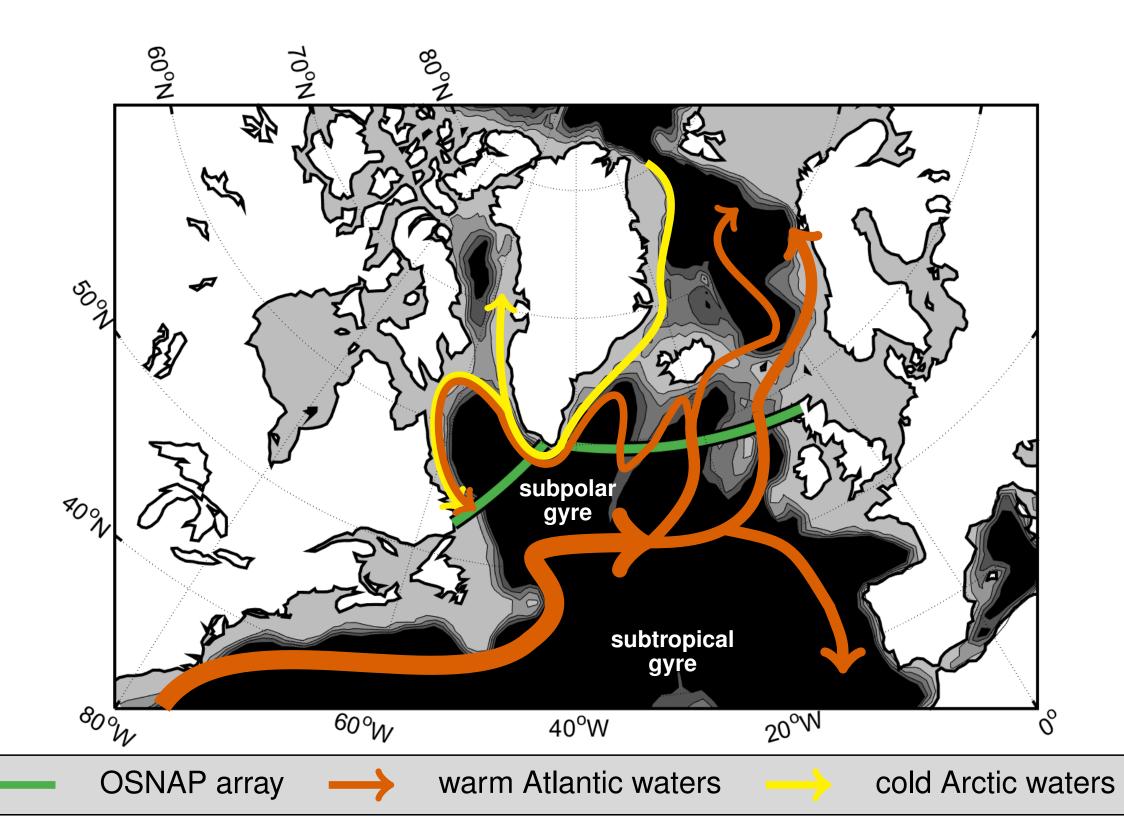
$$\\ \mathsf{L}^{\mathsf{T}}: \text{ is the adjoint model (and \mathsf{L} is the tangent linear model)} \\ \mu_{k} &= \left(\frac{\partial J}{\partial x_{k}} \right): \text{ Lagrange multipliers or gradients} \end{aligned}$$

$$\\ \text{Johnson \& Marshall, J.Phys. Oceanogr. (2002) \\ Heimbach et al. Deep Sea Res. (2011) \\ Pillar et al., J. Clim. (2016) \end{aligned}$$

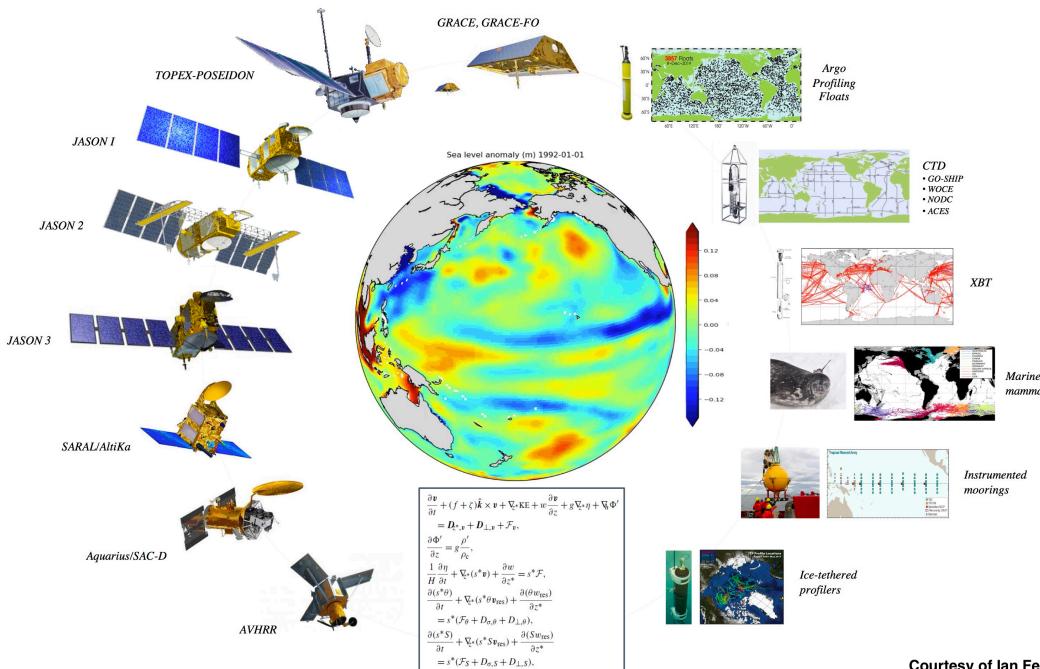


Algorithmic approach

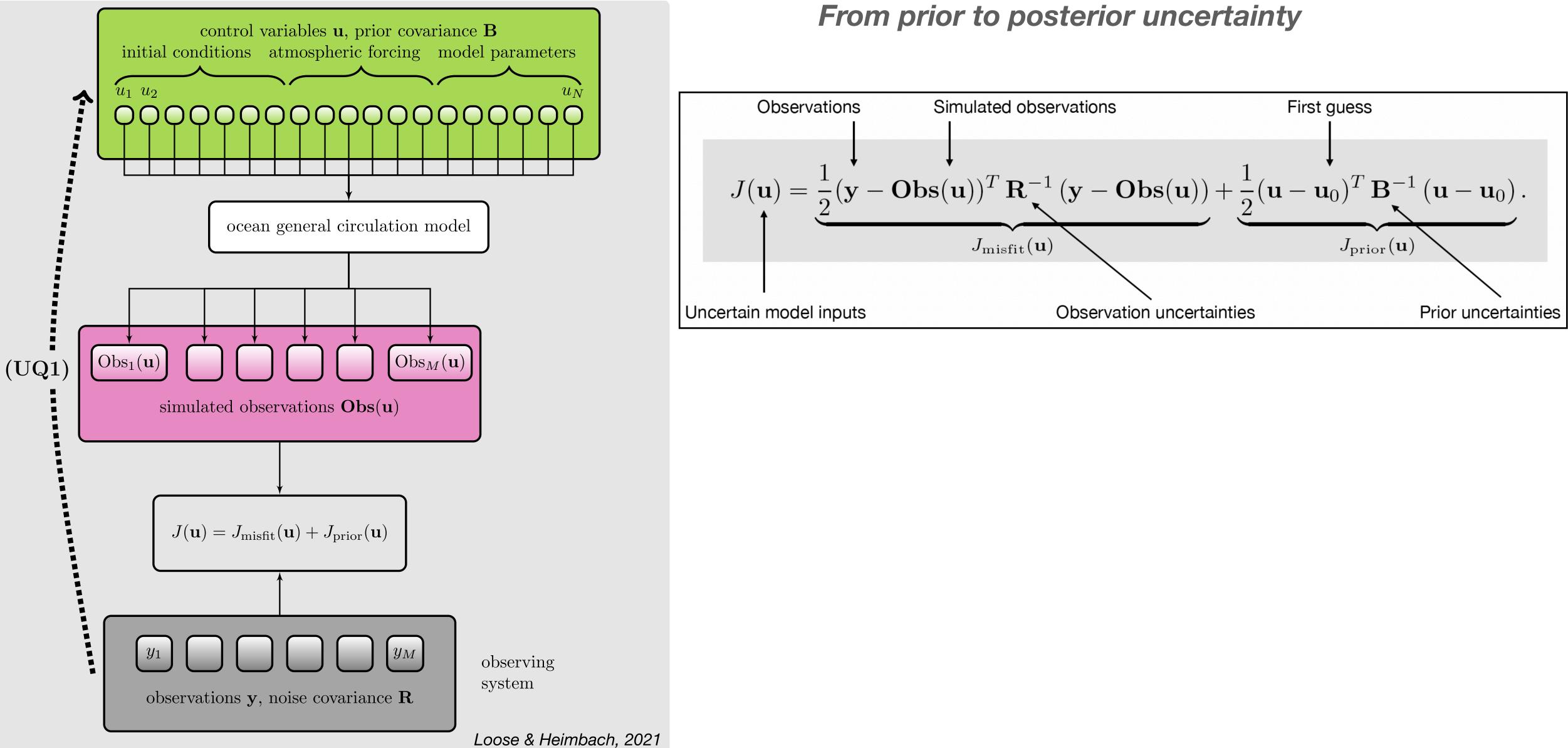
Formulate **Quantity of Interest (Qol)**



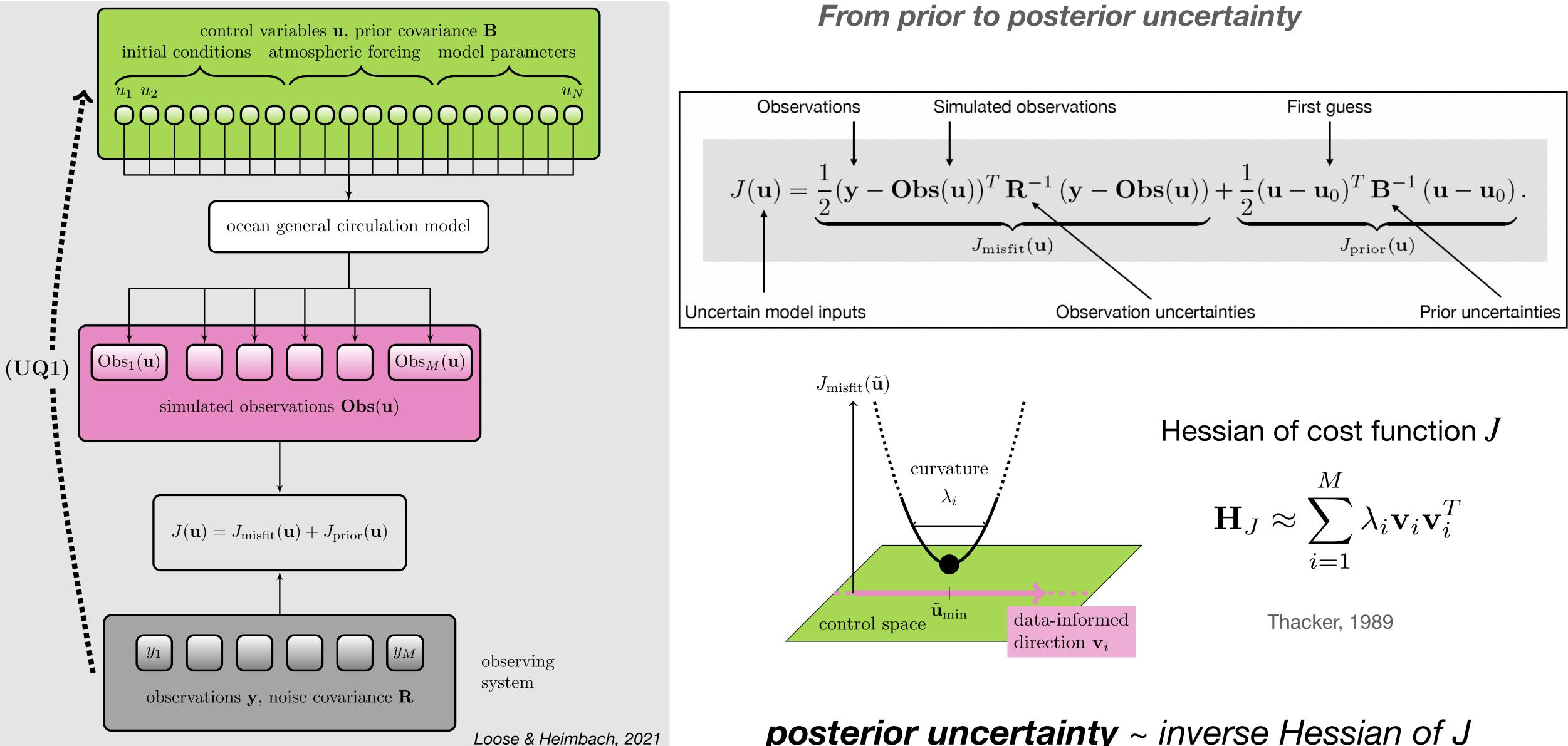
Leverage adjoint-based data assimilation framework: ECCO



Courtesy of Ian Fenty

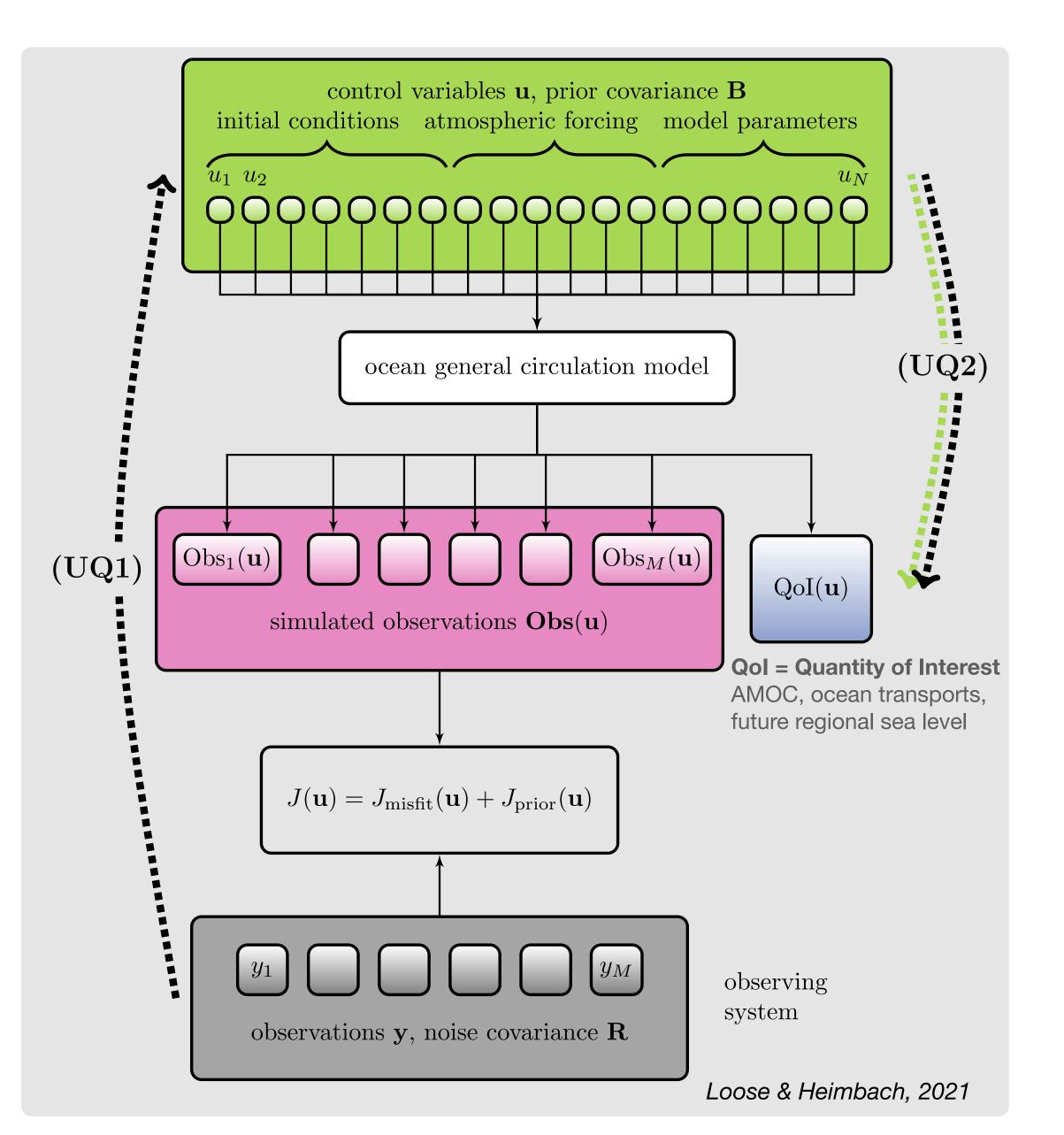


(UQ1): Inverse uncertainty propagation From prior to posterior uncertainty



(UQ1): Inverse uncertainty propagation

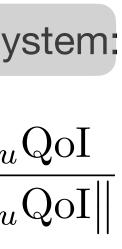
posterior uncertainty ~ inverse Hessian of J

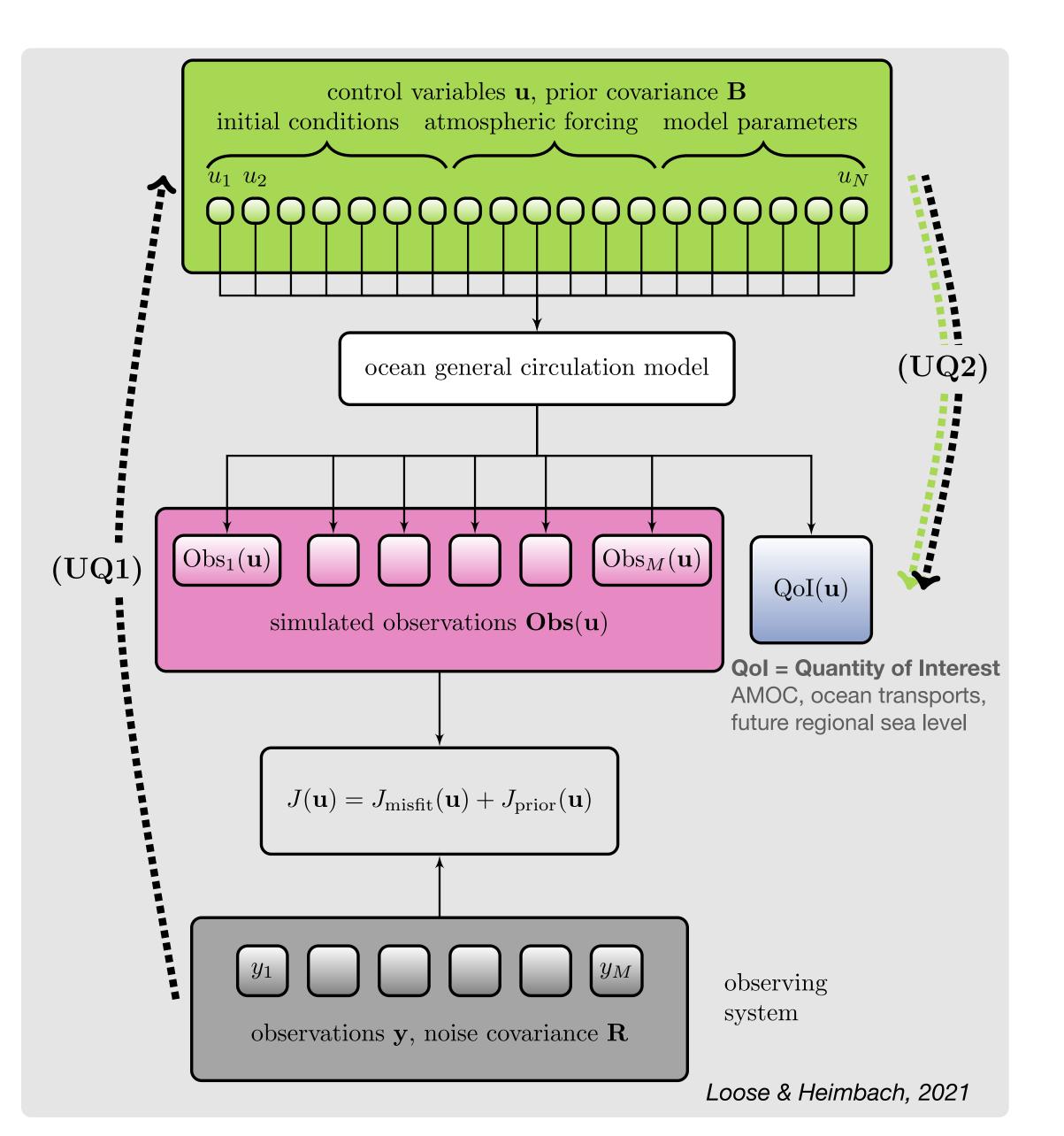


(UQ2): Forward uncertainty propagation From posterior to Qol uncertainty

Uncertainty reduction in quantity of interest (QoI) by observing system:

$$\sum_{i=1}^{M} \frac{\lambda_i}{\lambda_i + 1} (\mathbf{q} \bullet \mathbf{v}_i)^2 \in [0, 1) \quad \text{where} \quad \mathbf{q} = \frac{\mathbf{B}^{T/2} \nabla}{\|\mathbf{B}^{T/2} \nabla}$$



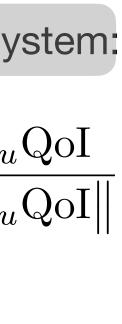


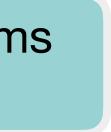
(UQ2): Forward uncertainty propagation From posterior to Qol uncertainty

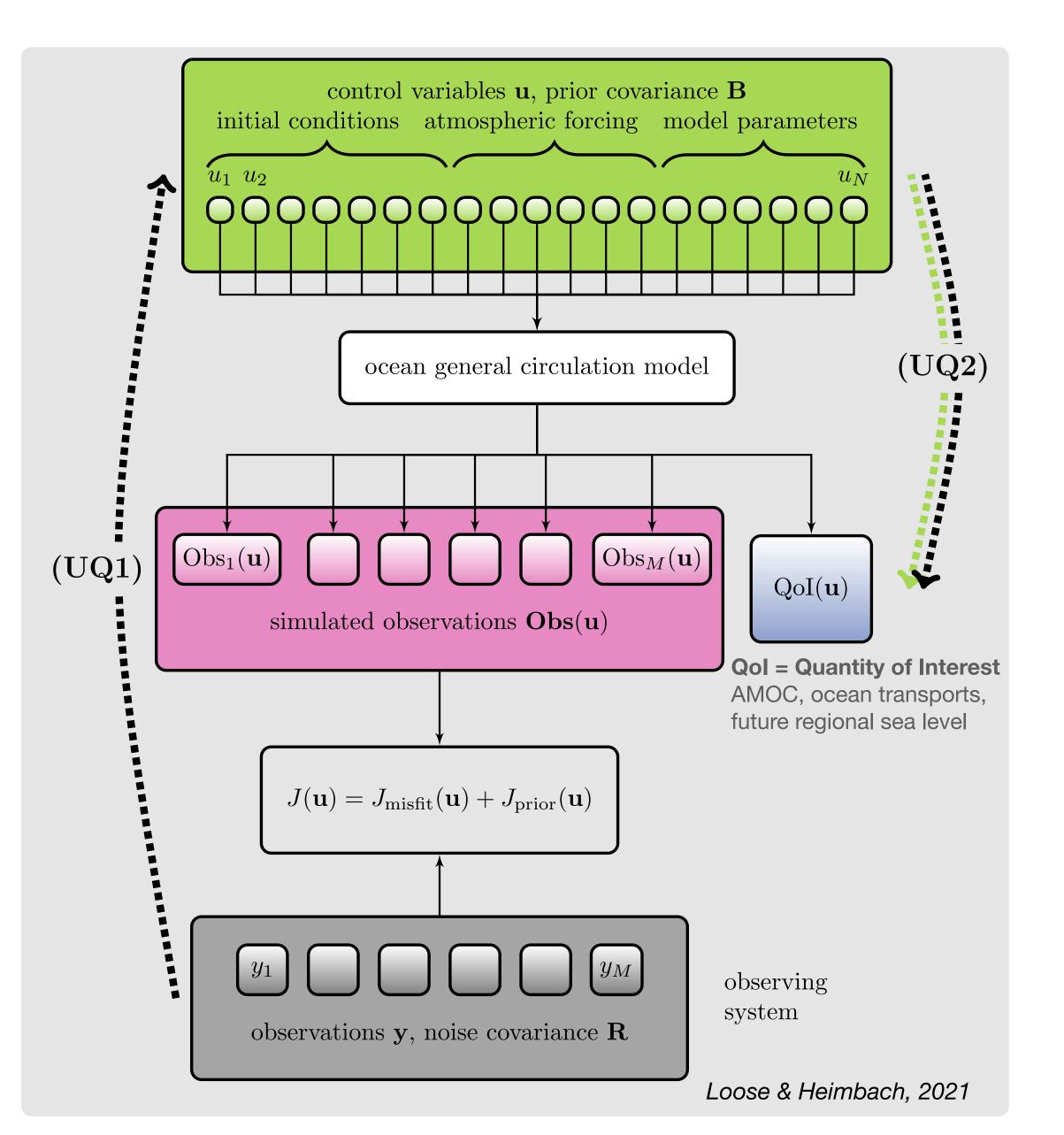
Uncertainty reduction in quantity of interest (QoI) by observing system:

$$\sum_{i=1}^{M} \frac{\lambda_i}{\lambda_i + 1} (\mathbf{q} \bullet \mathbf{v}_i)^2 \in [0, 1) \quad \text{where} \quad \mathbf{q} = \frac{\mathbf{B}^{T/2} \nabla}{\|\mathbf{B}^{T/2} \nabla}$$

$$(\mathbf{q} \bullet \mathbf{v}_i)^2 = \begin{matrix} \text{Degree of shared adjustment mechanism} \\ \text{between observing system and Qol} \end{matrix}$$







(UQ2): Forward uncertainty propagation From posterior to Qol uncertainty

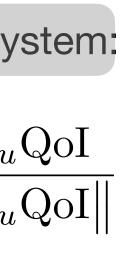
Uncertainty reduction in quantity of interest (QoI) by observing system:

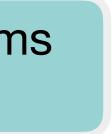
$$\sum_{i=1}^{M} \frac{\lambda_i}{\lambda_i + 1} (\mathbf{q} \cdot \mathbf{v}_i)^2 \in [0, 1) \quad \text{where} \quad \mathbf{q} = \frac{\mathbf{B}^{T/2} \nabla}{\|\mathbf{B}^{T/2} \nabla}$$

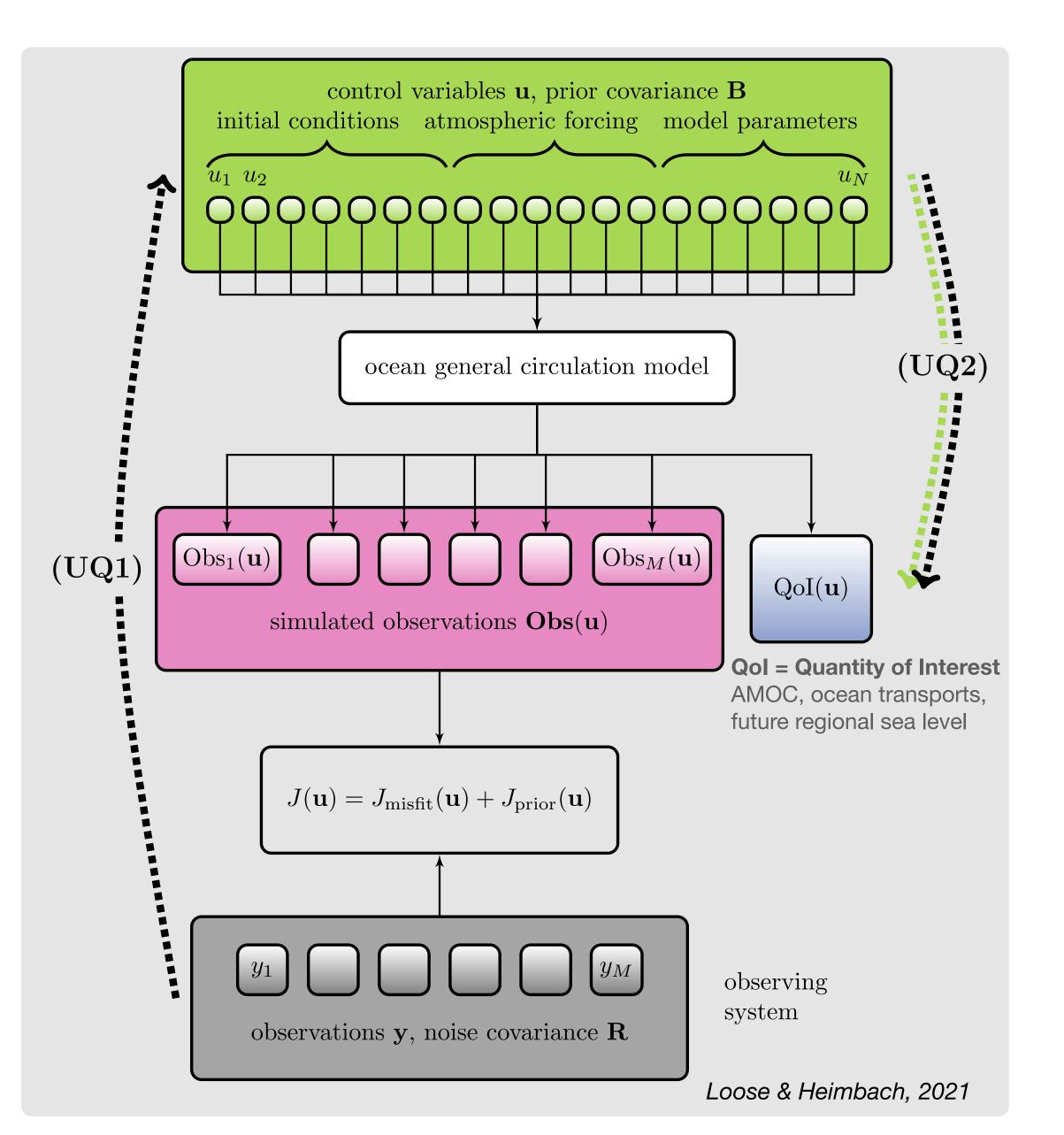
$$(\mathbf{q} \bullet \mathbf{v}_i)^2 = \begin{array}{l} \text{Degree of shared adjustment mechanism} \\ \text{between observing system and Qol} \end{array}$$

Eigenvalues reflect "sensitivity-to-noise" ratio of observations

$$\lambda = \frac{\left\| \mathbf{B}^{T/2} \nabla_u \mathbf{Obs} \right\|^2}{\varepsilon_{\mathbf{Obs}}^2}$$



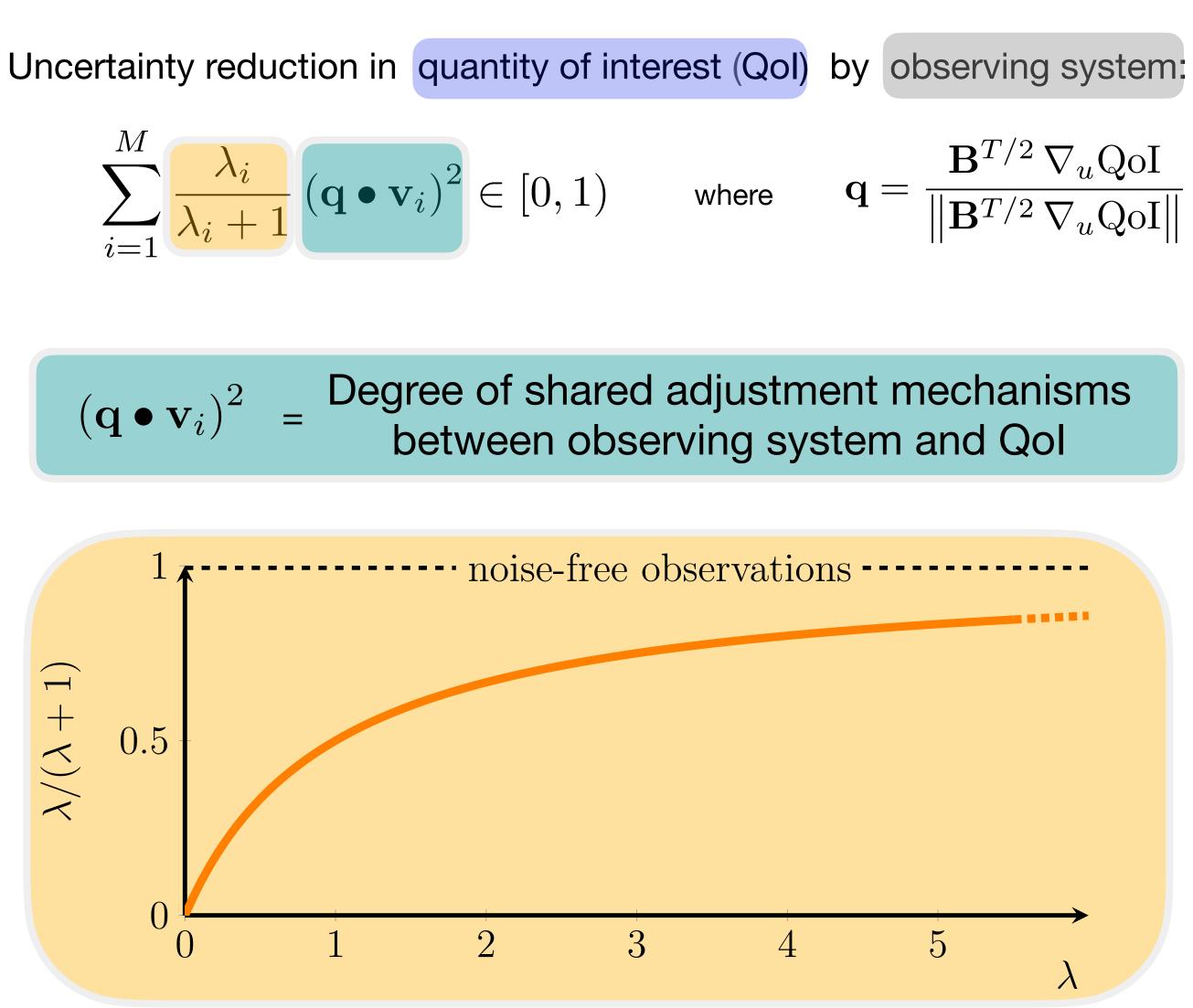


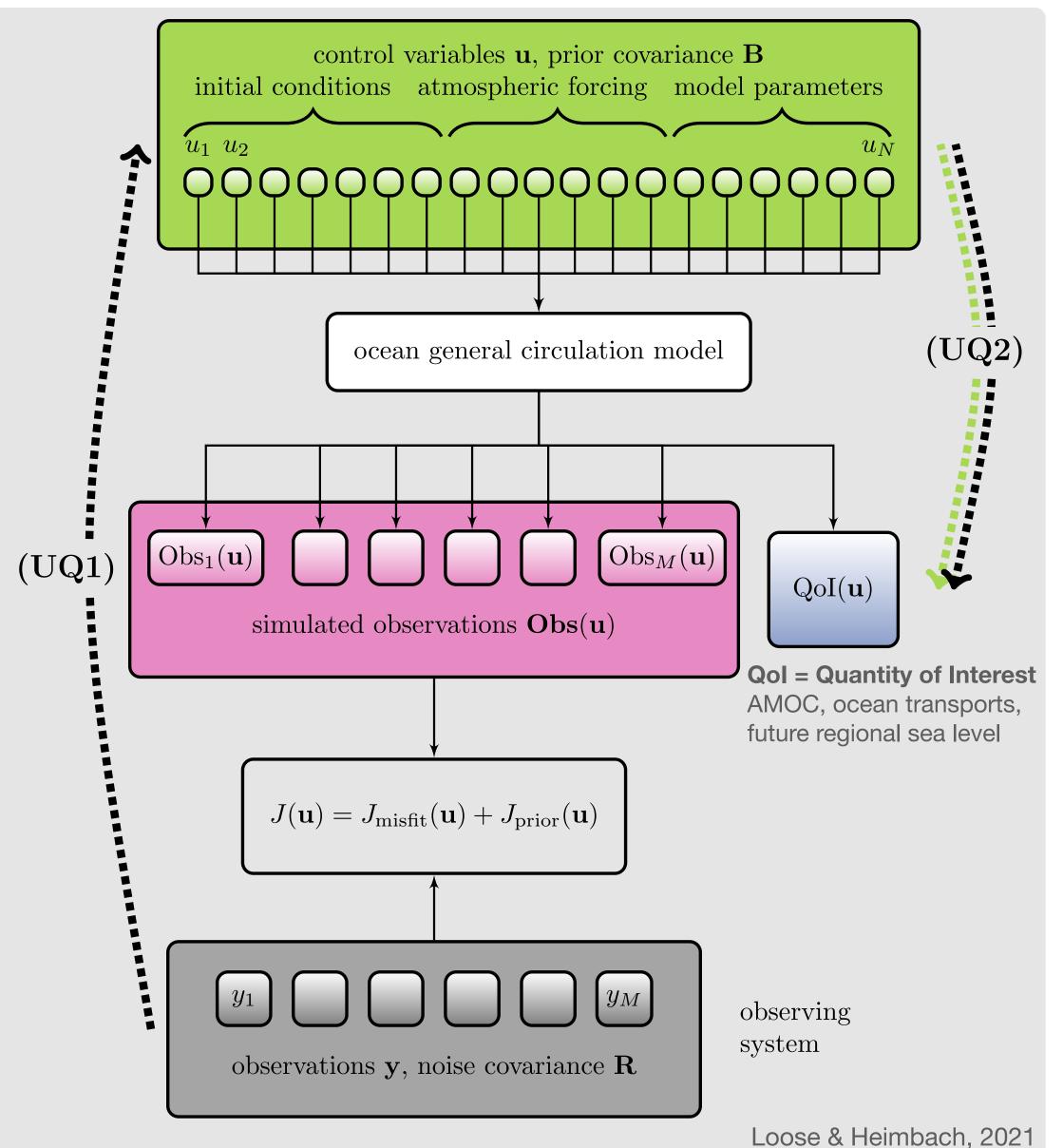


(UQ2): Forward uncertainty propagation From posterior to Qol uncertainty

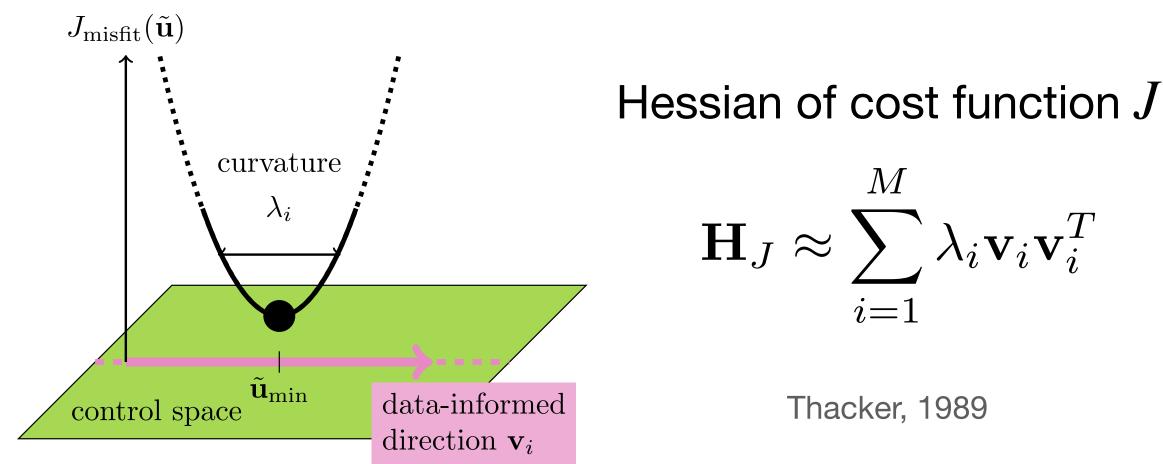
$$\sum_{i=1}^{M} \frac{\lambda_i}{\lambda_i + 1} (\mathbf{q} \bullet \mathbf{v}_i)^2 \in [0, 1) \quad \text{where} \quad \mathbf{q} = \frac{\mathbf{B}^{T/2} \nabla}{\|\mathbf{B}^{T/2} \nabla}$$

 $(\mathbf{q} \bullet \mathbf{v}_i)^2 =$ between observing system and Qol



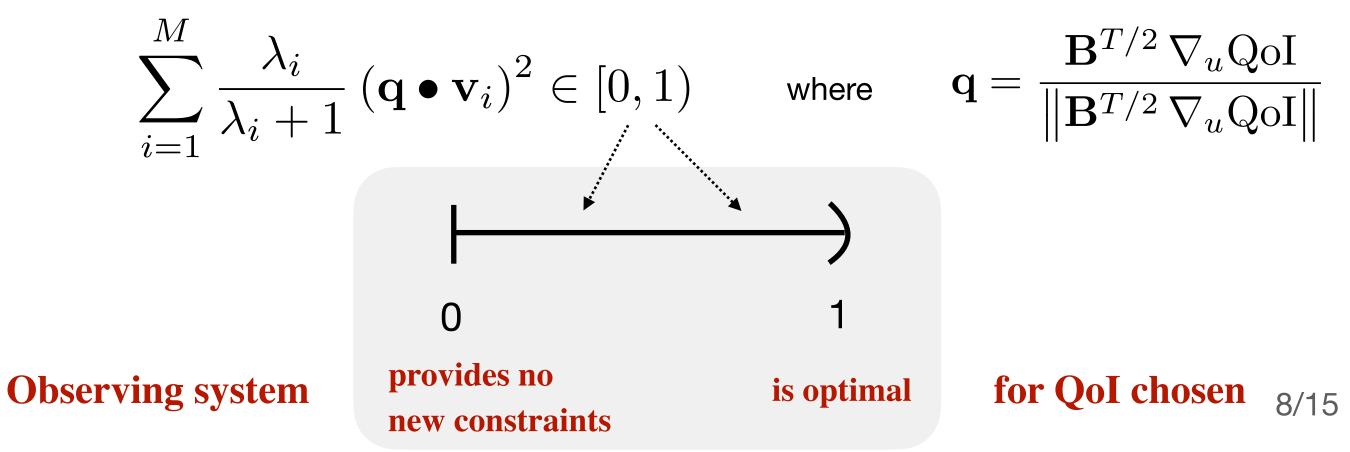


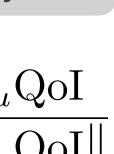
(UQ1): Inverse uncertainty propagation



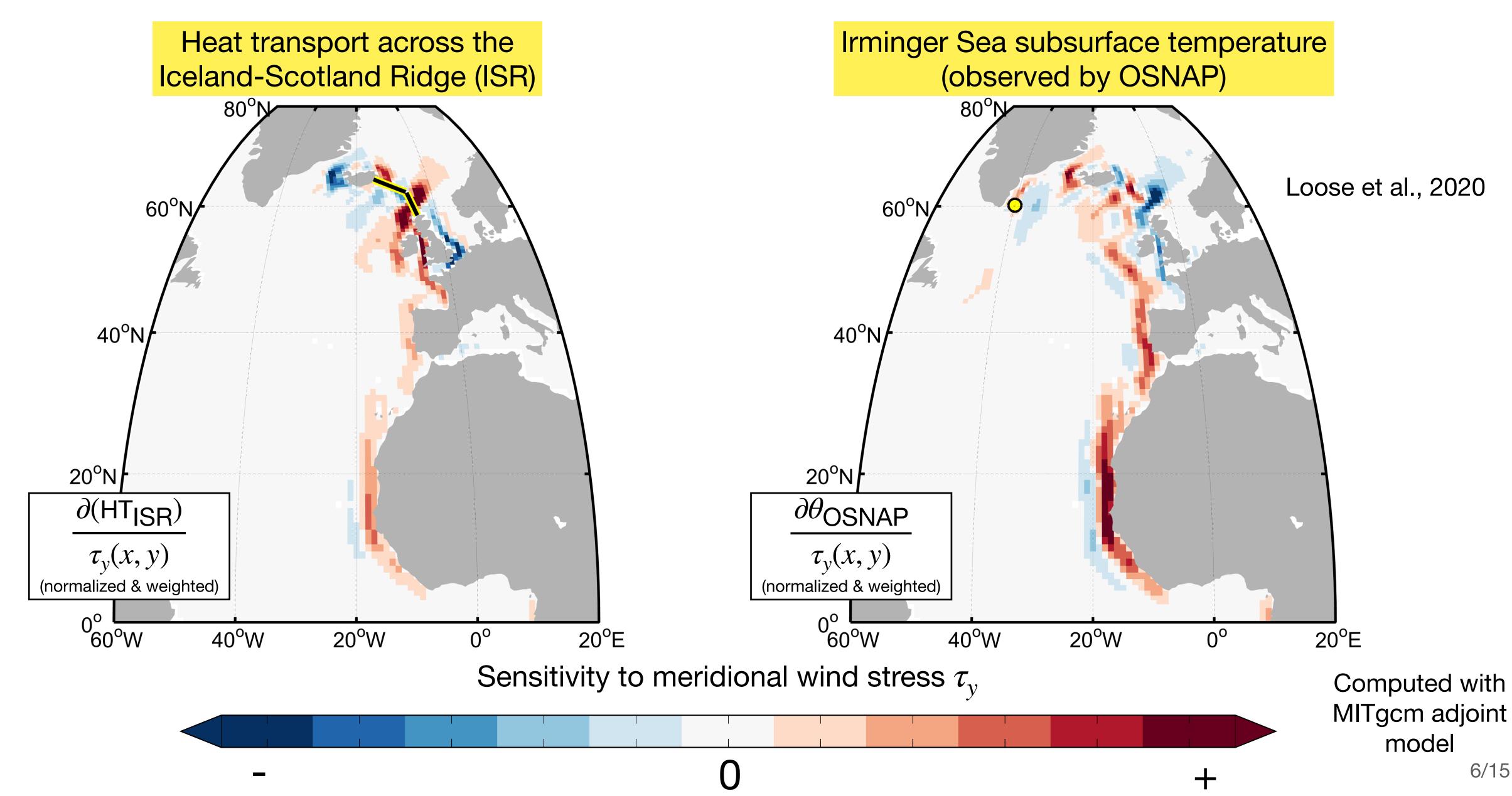
(UQ2): Forward uncertainty propagation

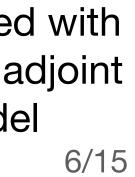
Uncertainty reduction in quantity of interest (Qol) by observing system:



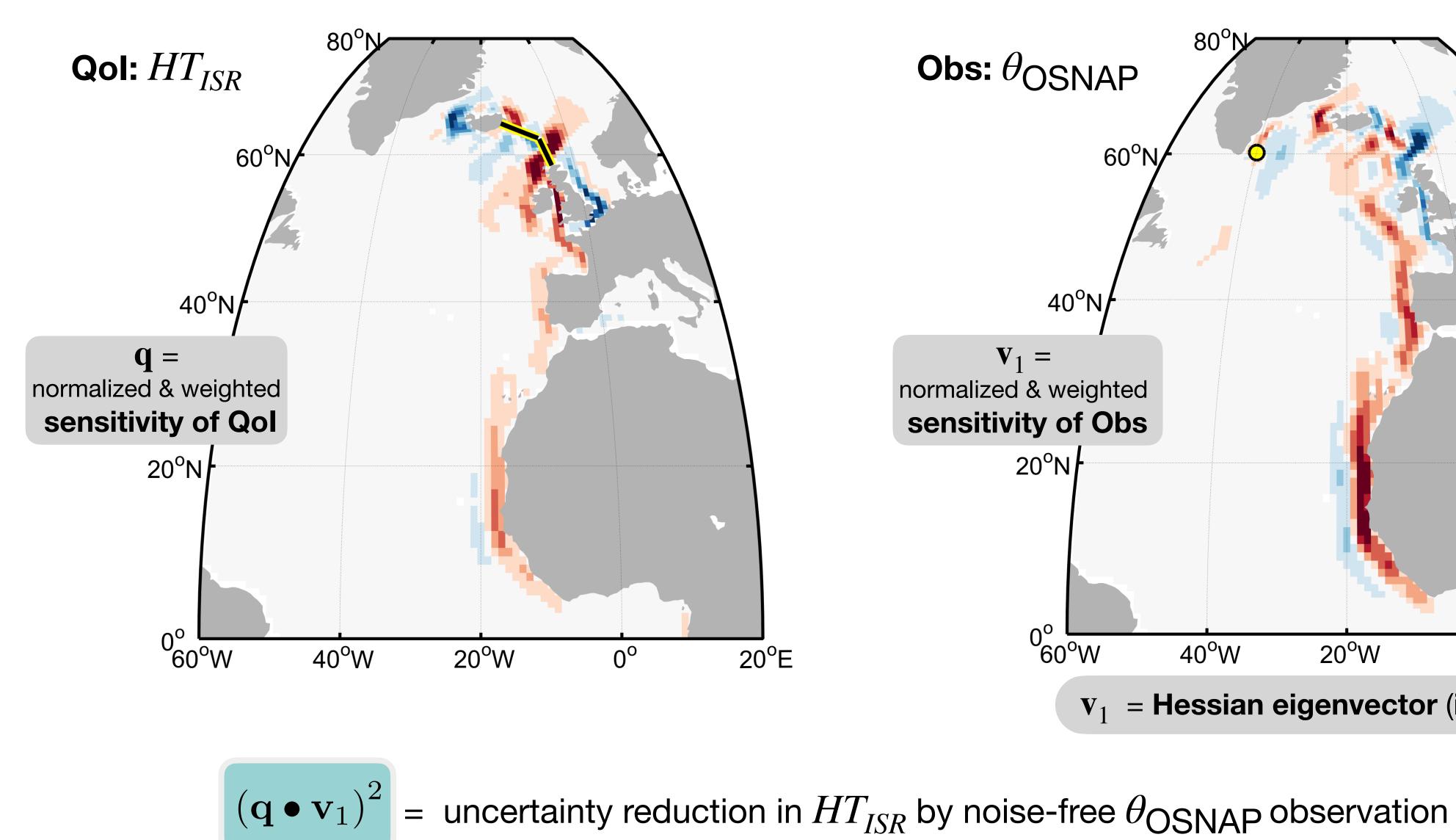


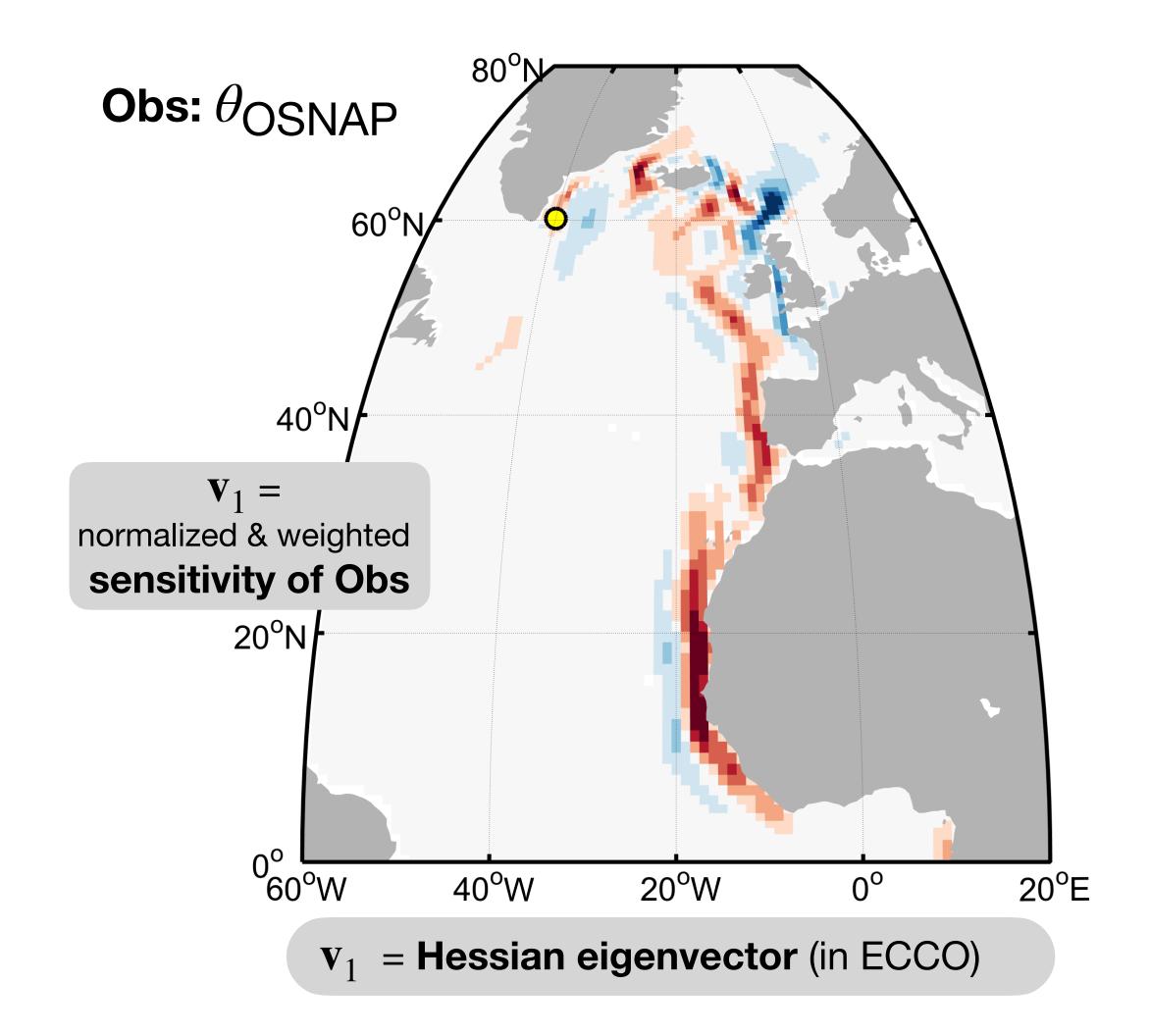
Sensitivity maps identify shared adjustment mechanisms & pathways



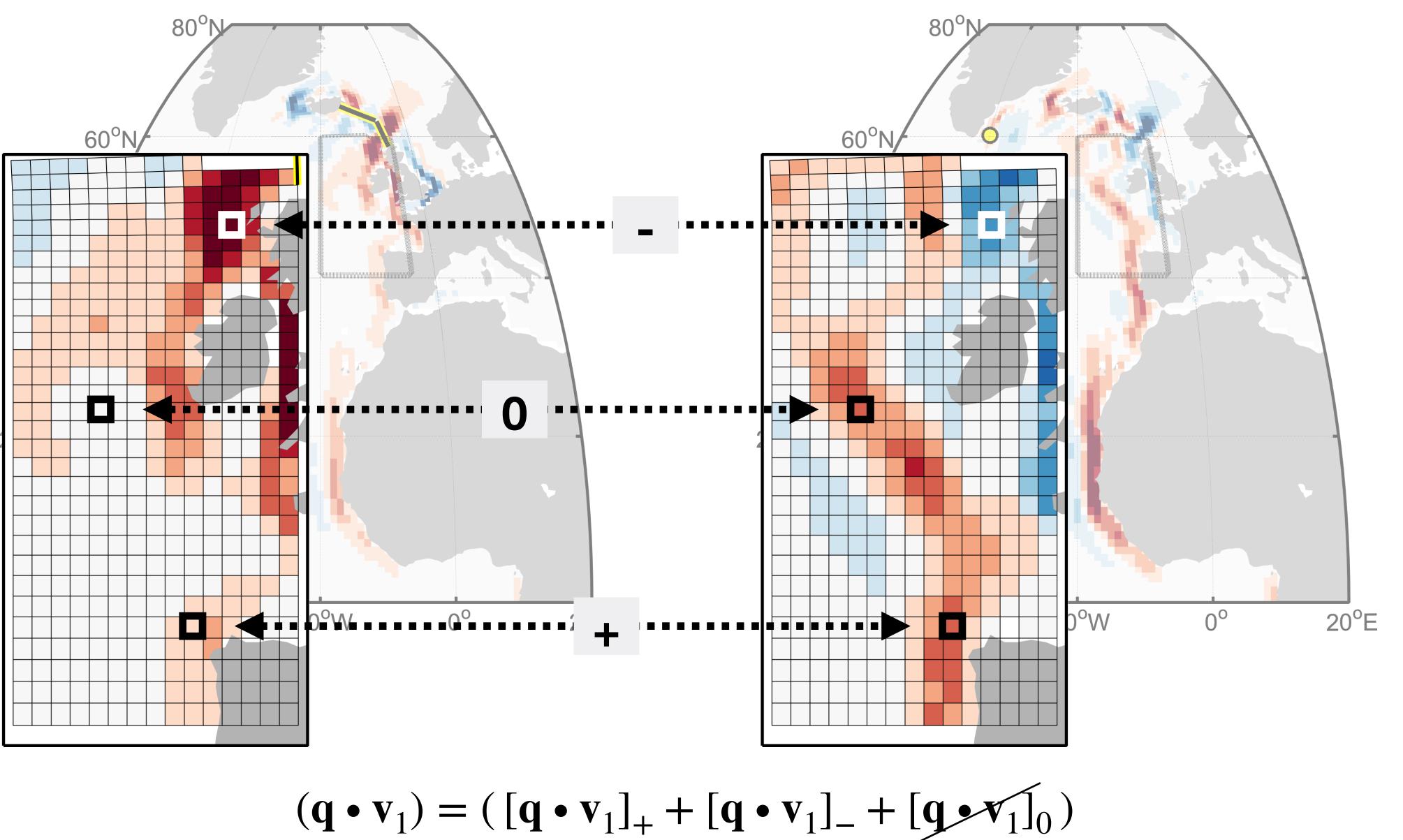


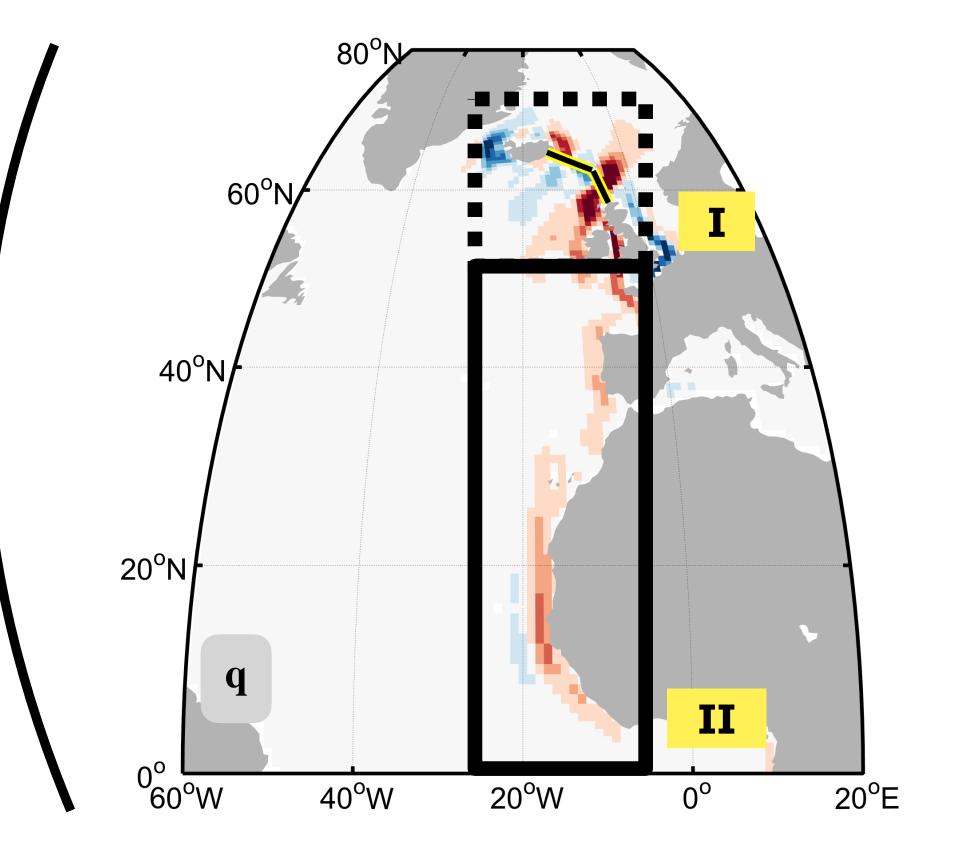
Sensitivity maps re-interpreted in the context of UQ





Computing $(\mathbf{q} \cdot \mathbf{v}_1)$

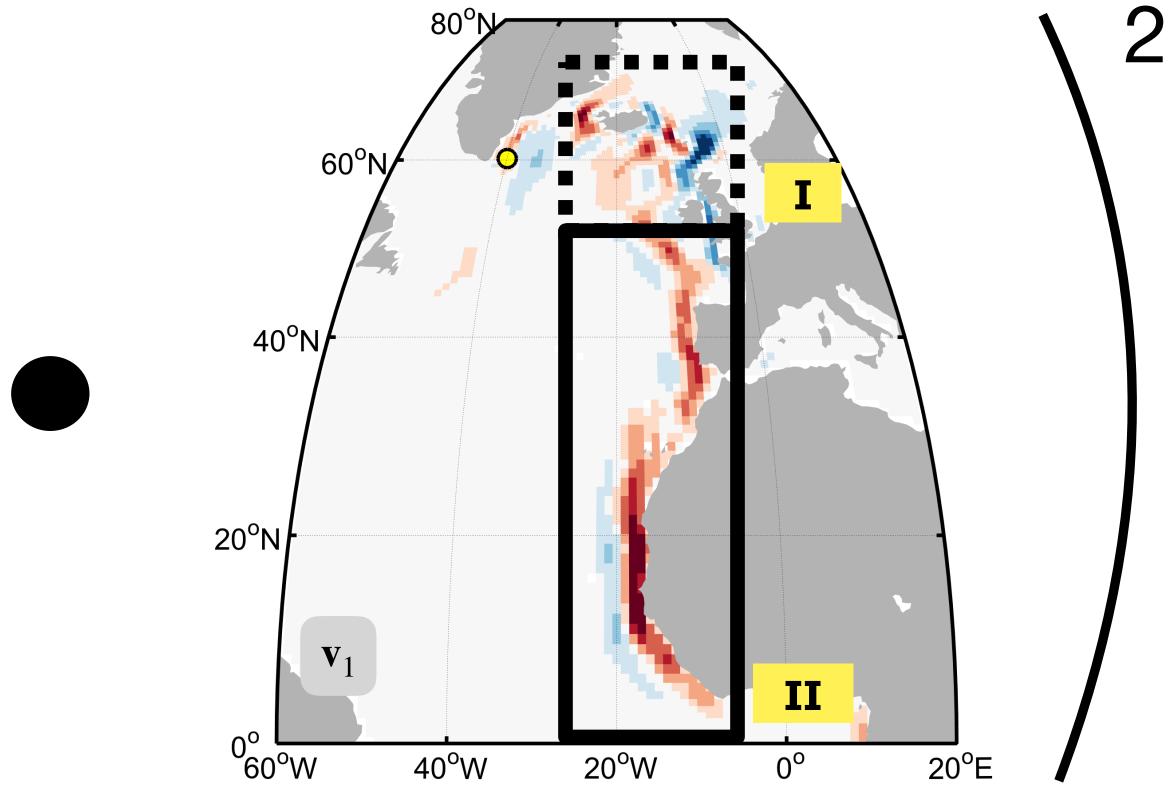




$$(\mathbf{q} \bullet \mathbf{v}_1)^2 = ([\mathbf{q} \bullet \mathbf{v}_1]_+ + [\mathbf{q} \bullet \mathbf{v}_1]_-)^2 = (0.15 + (-0.59))^2 = (-0.44)^2 = 19\%$$

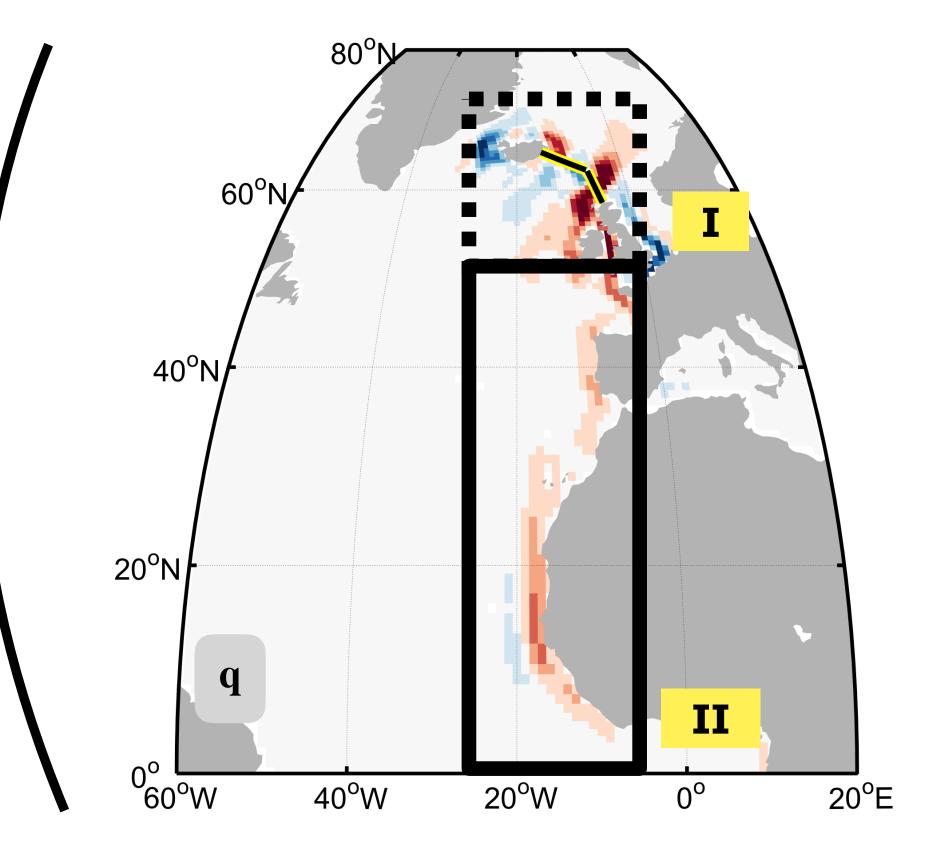
II I

Uncertainty reduction via oceanic teleconnections



Uncertainty reduction in HT_{ISR} by noise-free θ_{OSNAP} observation:

11/15



$$(\mathbf{q} \bullet \mathbf{v}_1)^2 = ([\mathbf{q} \bullet \mathbf{v}_1]_+ + [\mathbf{q} \bullet \mathbf{v}_1]_-)^2 = (0.15 + (-0.59))^2 = (-0.44)^2 = 19\%$$
II I

• BUT: destructive interference is possible

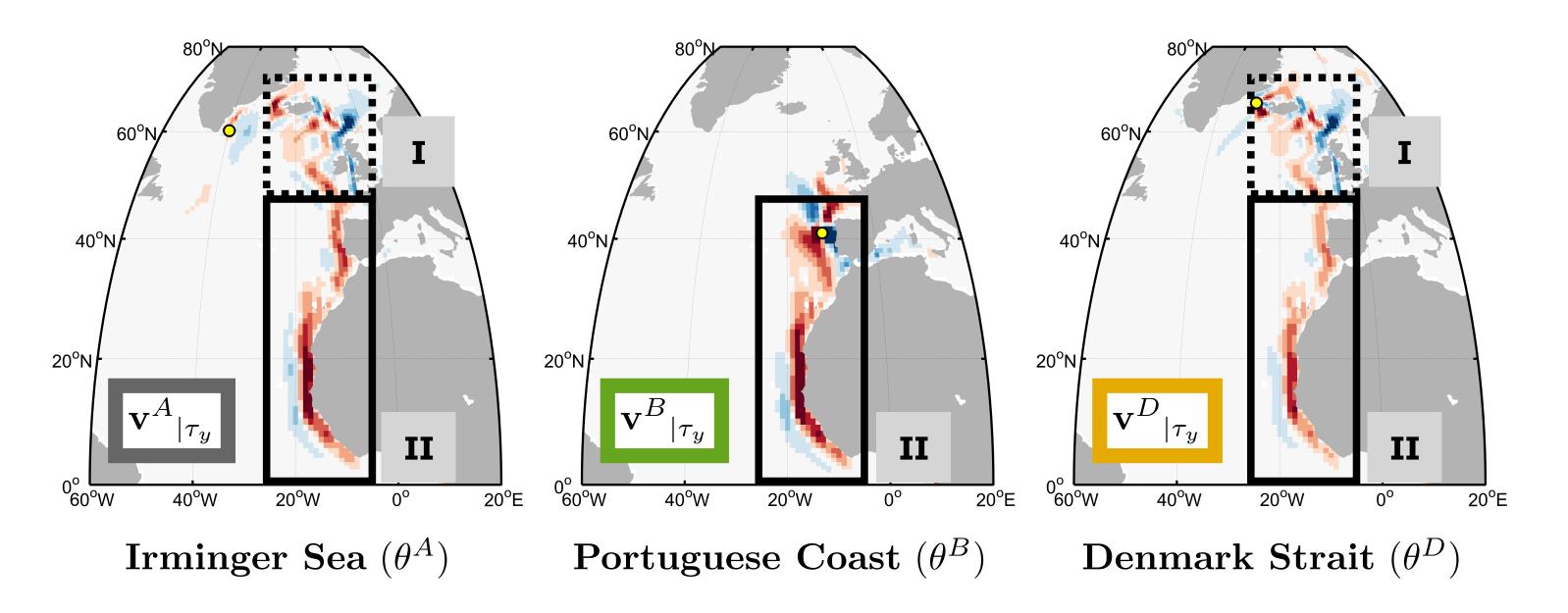
Uncertainty reduction via oceanic teleconnections



Uncertainty reduction in HT_{ISR} by noise-free θ_{OSNAP} observation:

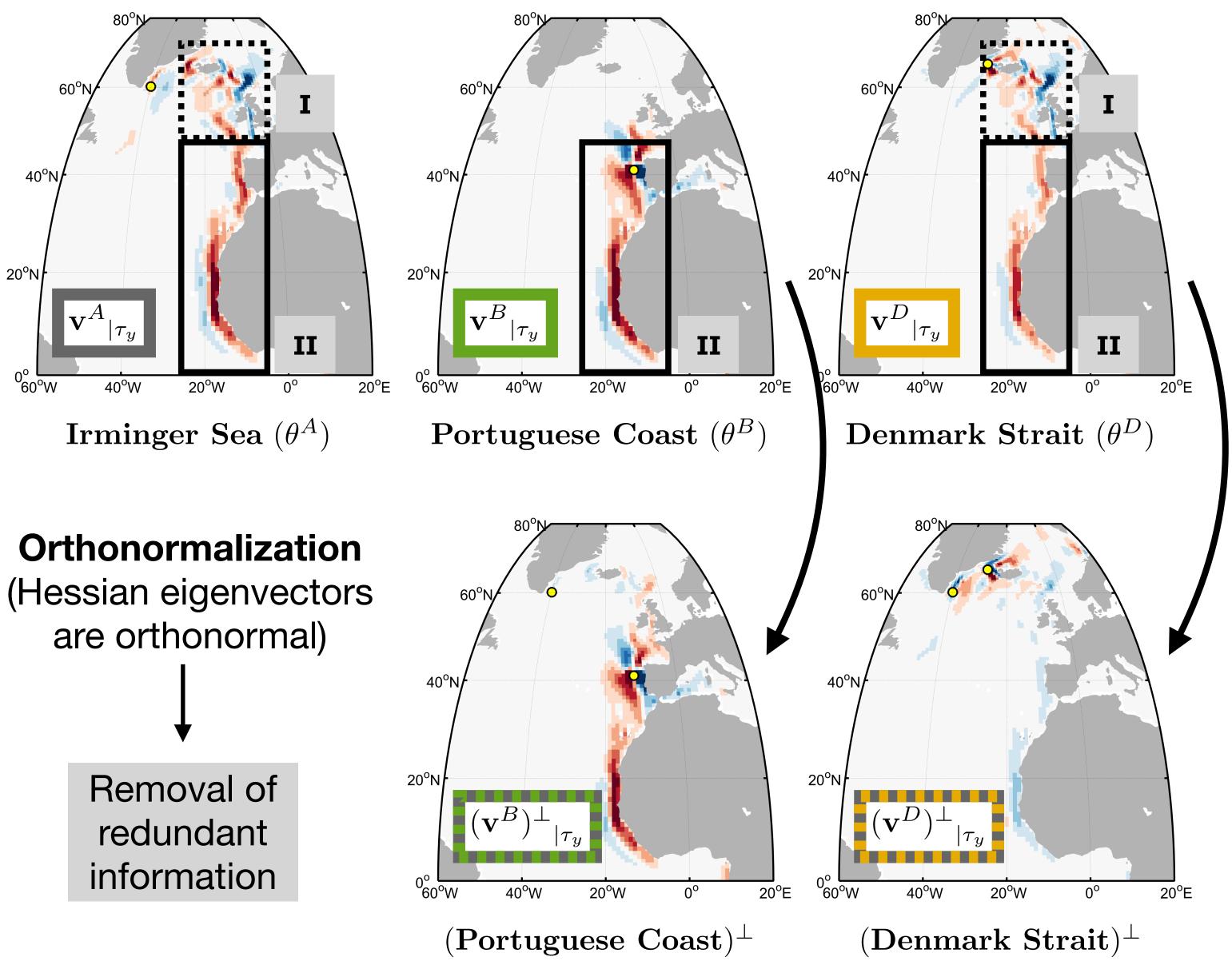
Shared adjustment mechanisms lead to large uncertainty reduction

11/15



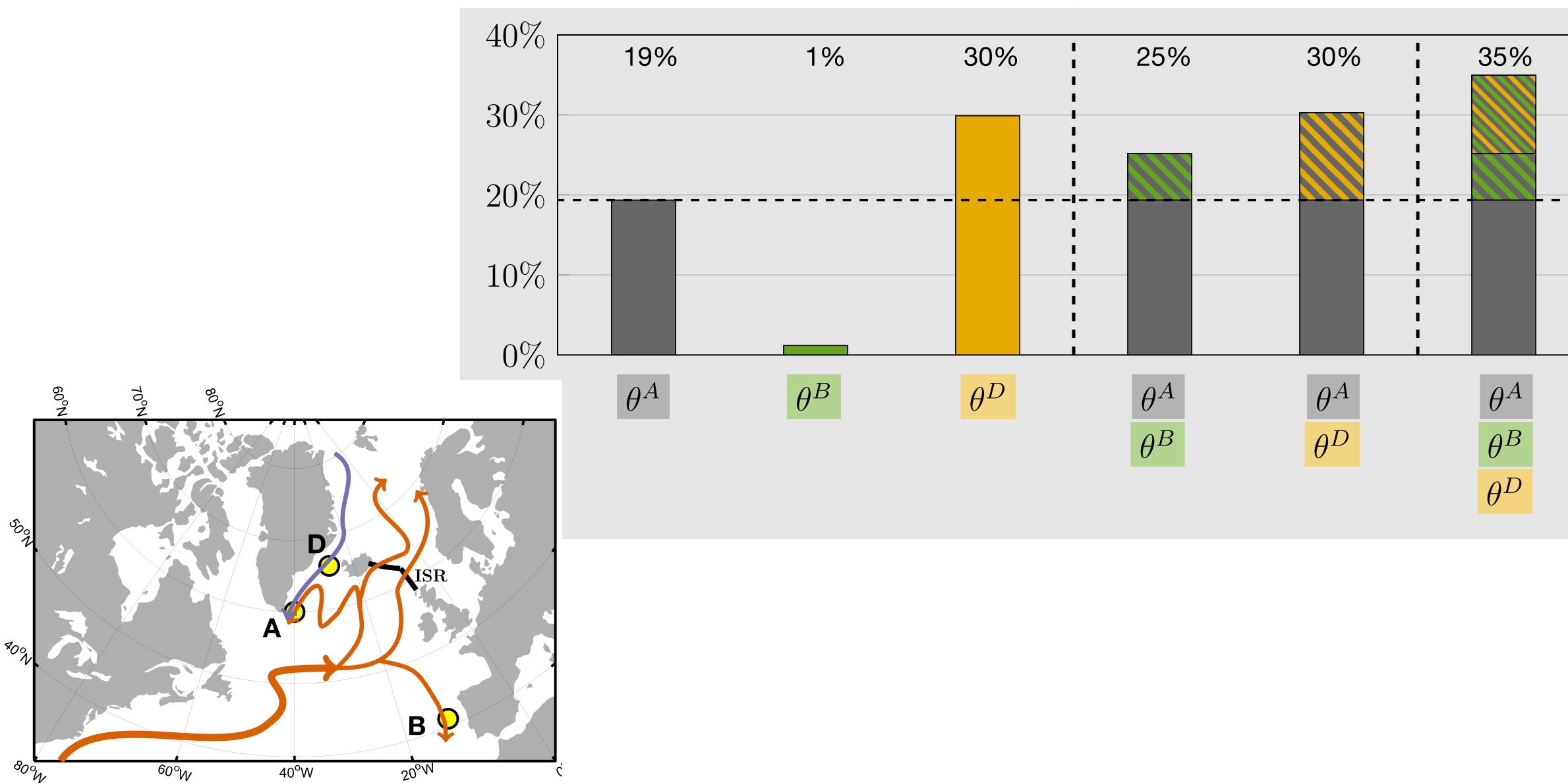
No actual data needed — can test future observing systems

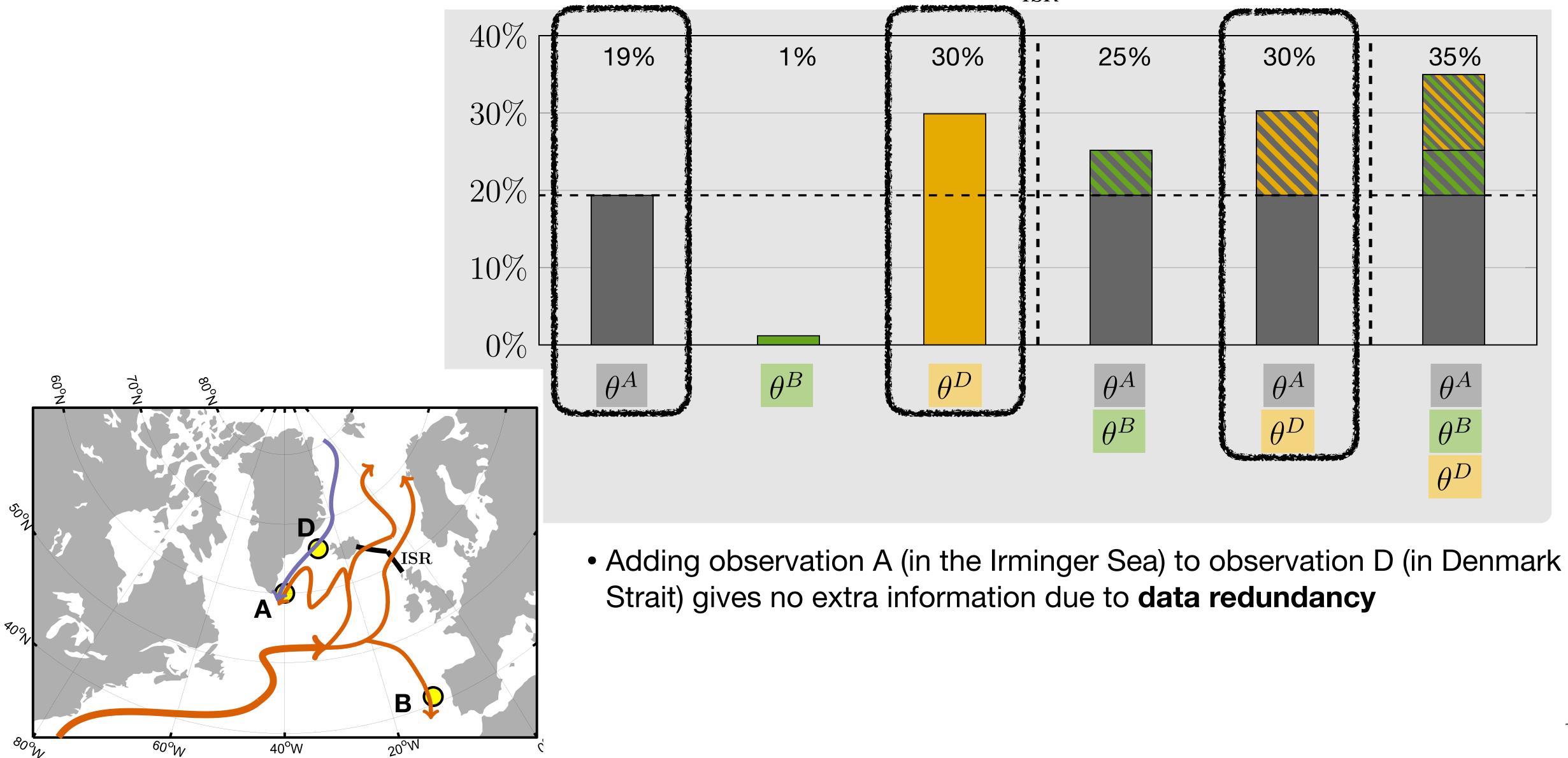
Loose & Heimbach, 2021



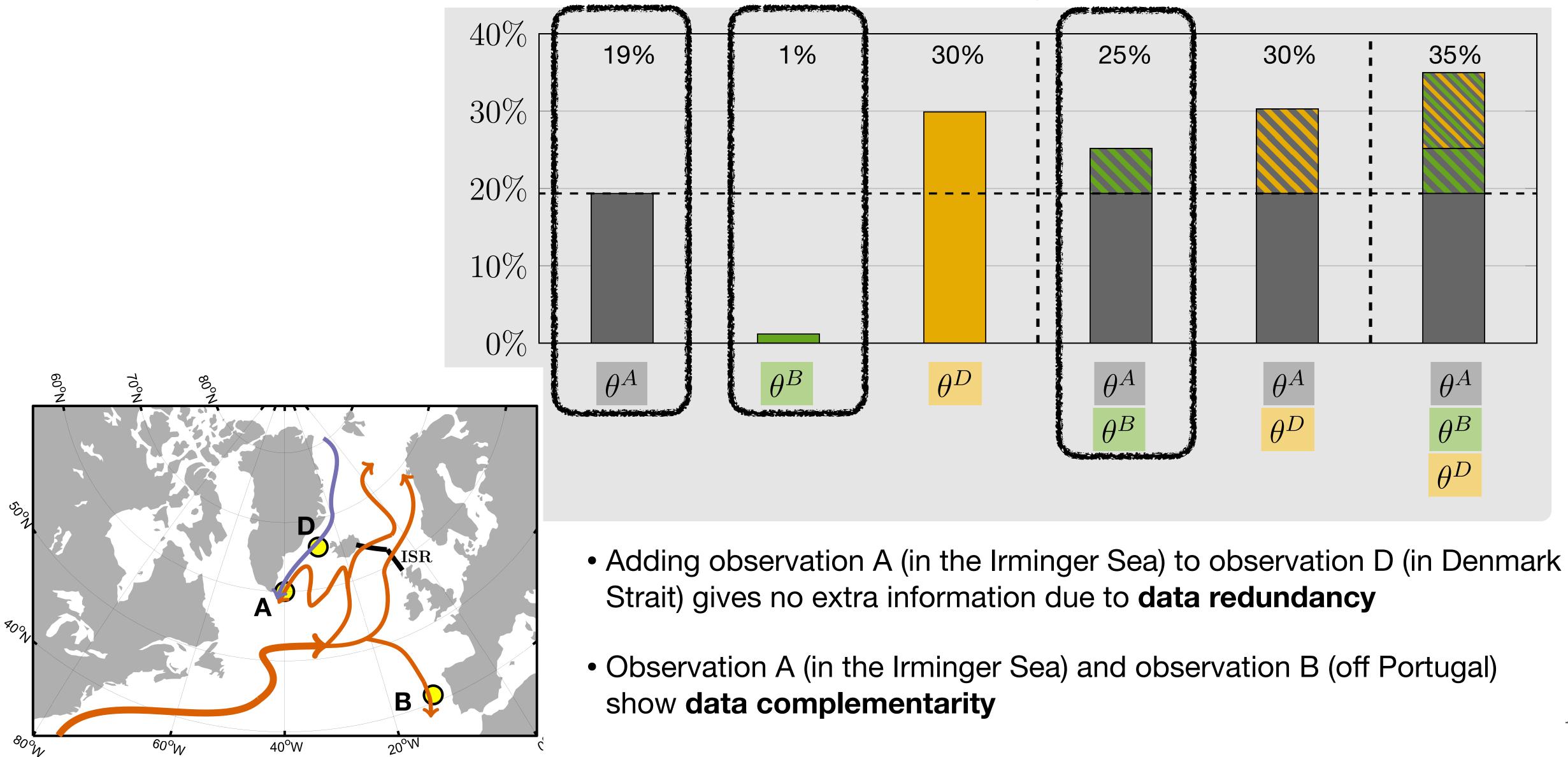
Loose & Heimbach, 2021

Assessing data redundancy Uncertainty reduction in HT_{ISR} by noise-free observations

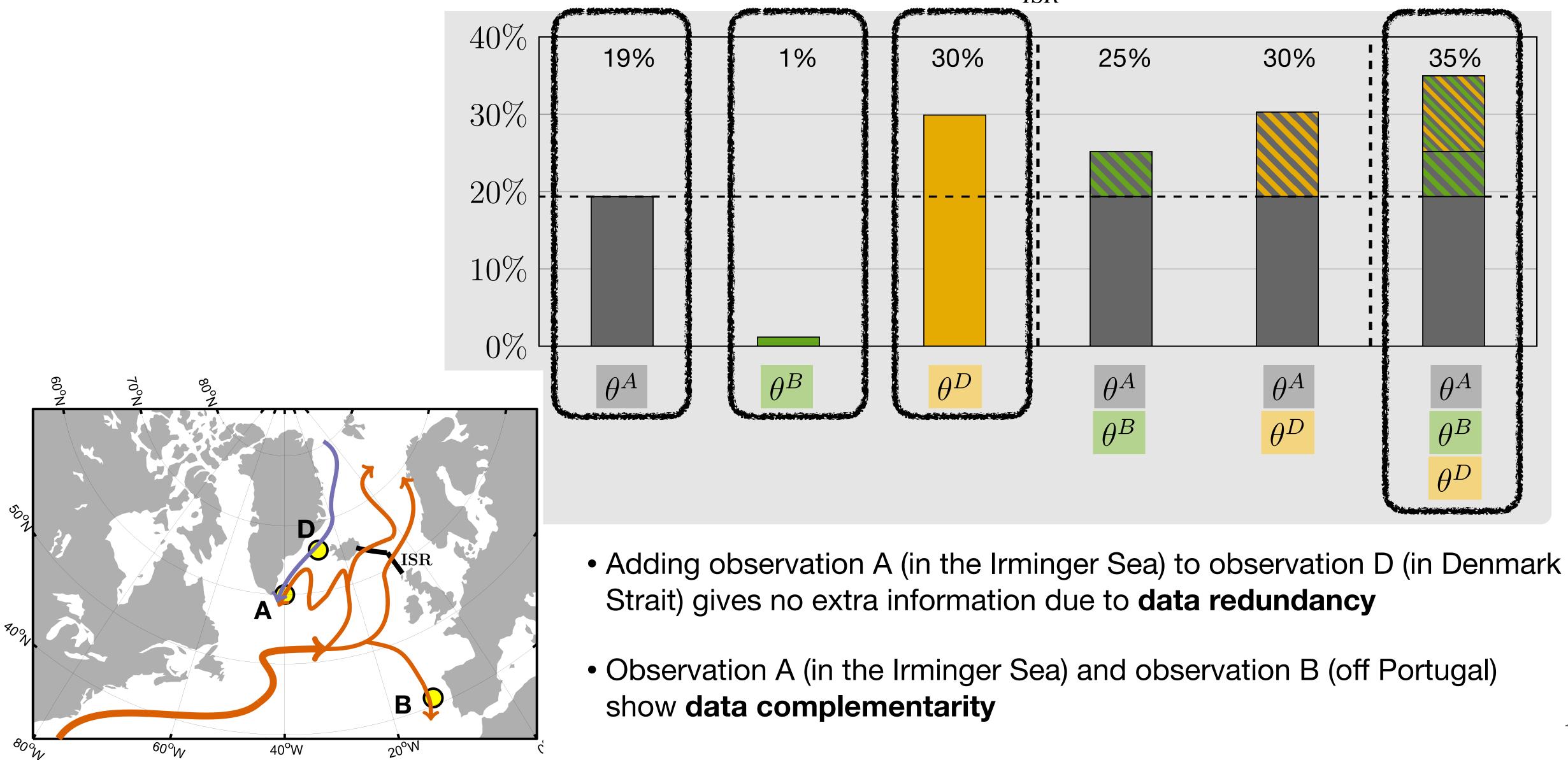




Uncertainty reduction in HT_{ISR} by noise-free observations



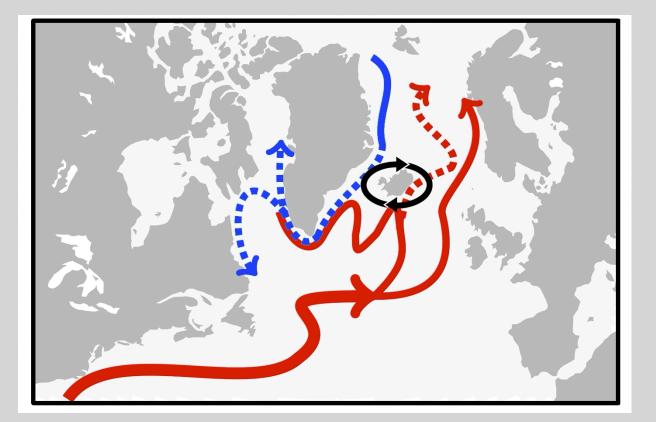
Uncertainty reduction in HT_{ISR} by noise-free observations

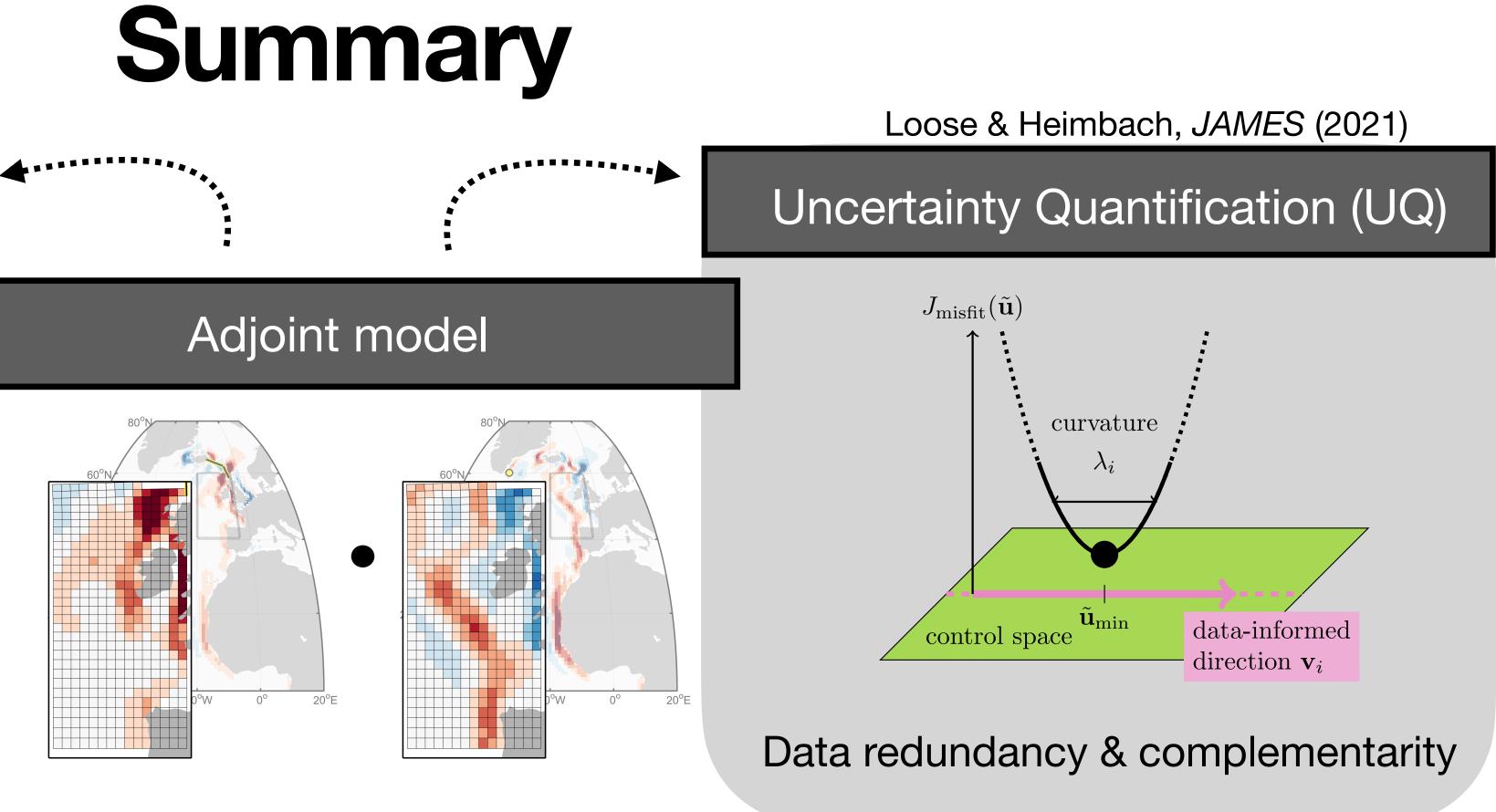


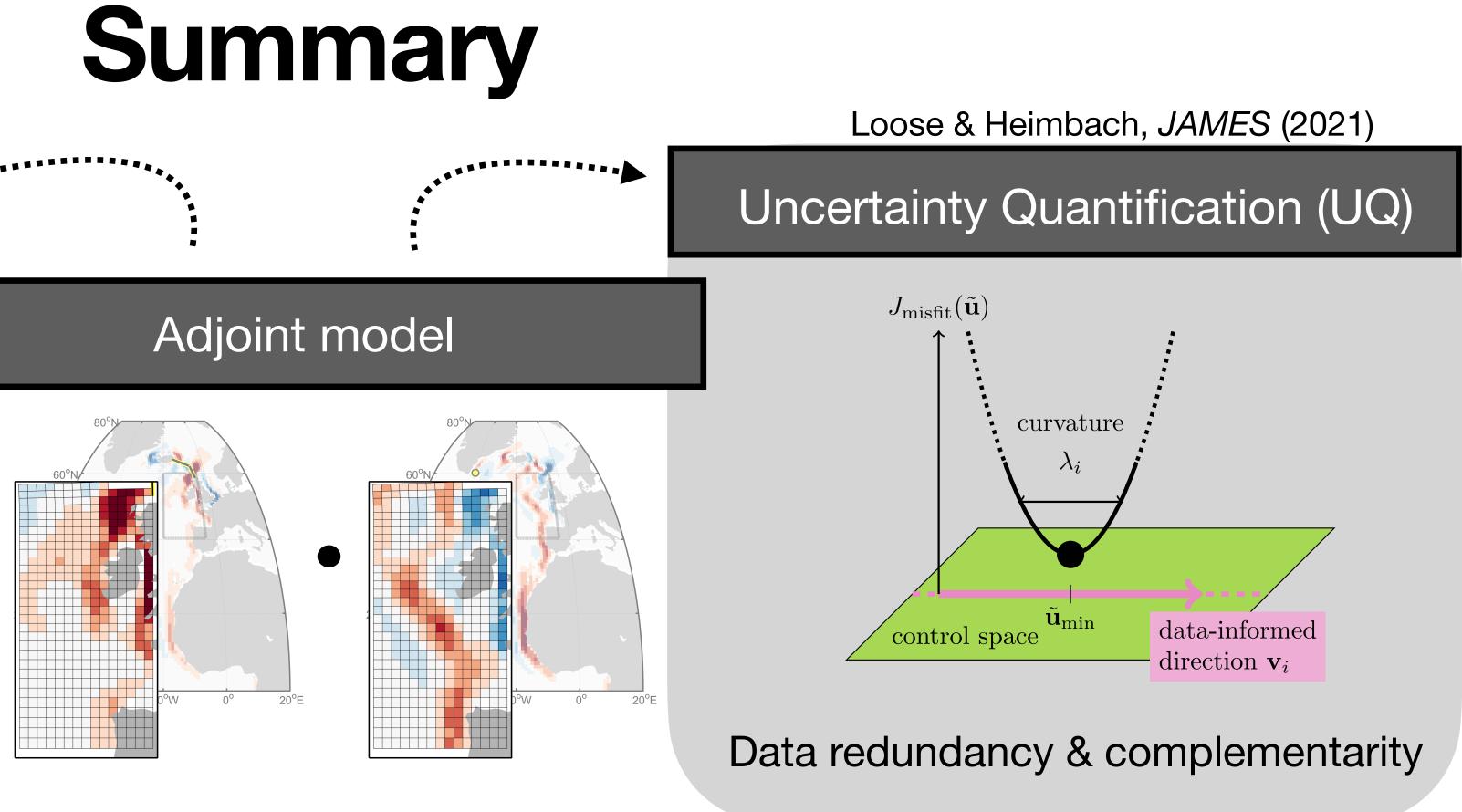
Uncertainty reduction in HT_{ISR} by noise-free observations

Loose et al., JGR Oceans (2020)

Oceanic teleconnections





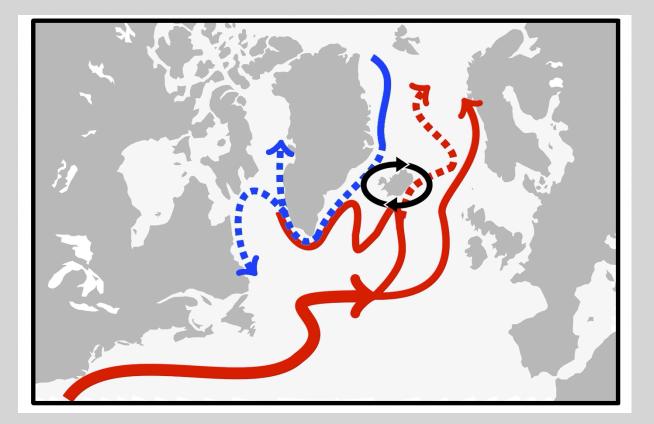


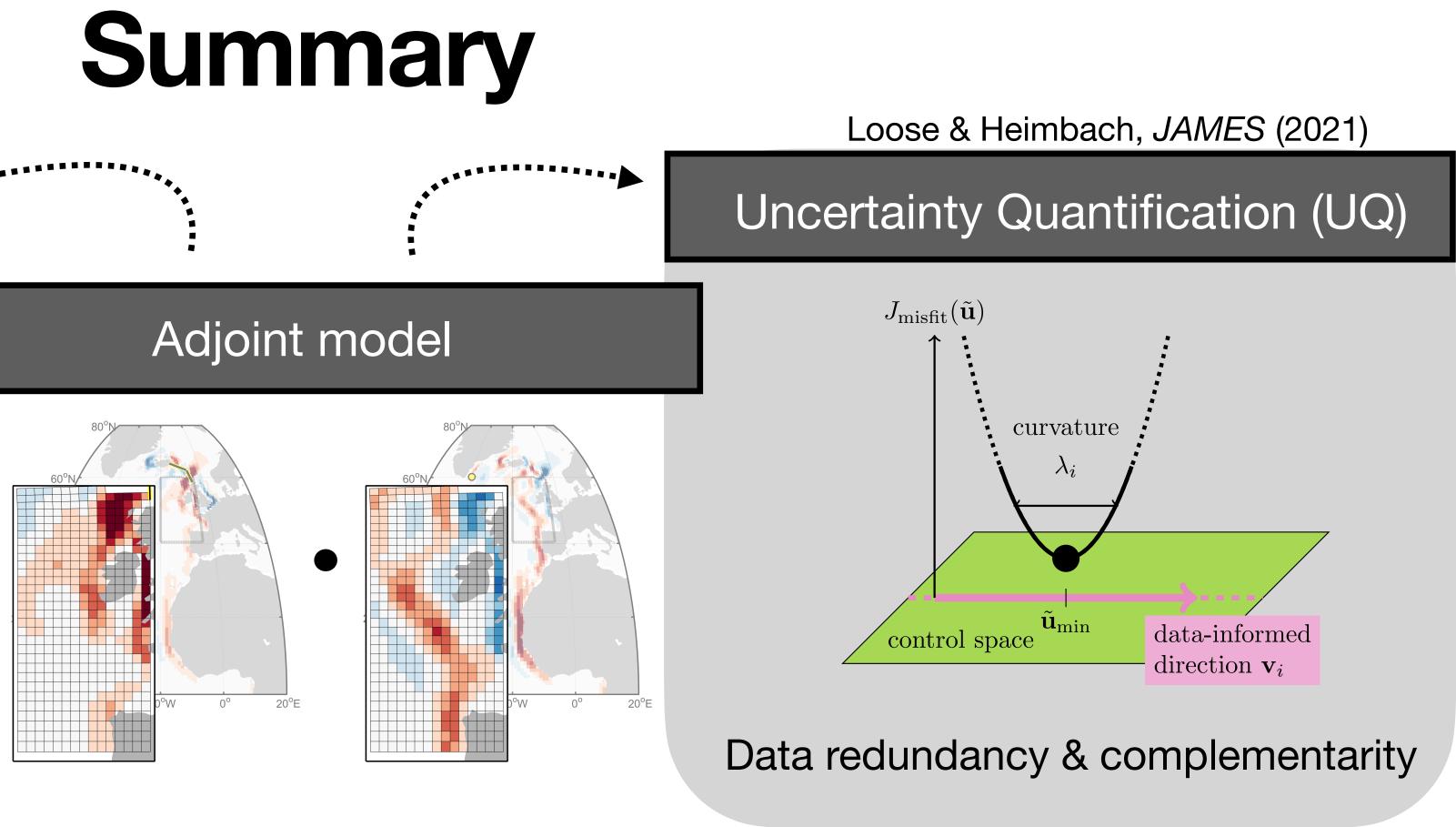
Shared adjustment mechanisms

Dynamics-informed & quantitative observing system design

Loose et al., JGR Oceans (2020)

Oceanic teleconnections





Shared adjustment mechanisms

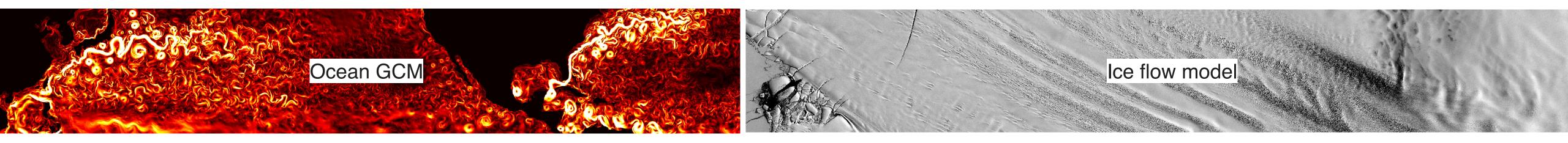
Dynamics-informed & quantitative observing system design

Limitation: Adjoint only provides linearized approximation of ocean dynamics **Appropriate for:** Large-scale dynamics and Gaussian approximation of uncertainty **Outlook:** How to deal with very nonlinear dynamics & implied uncertainty?

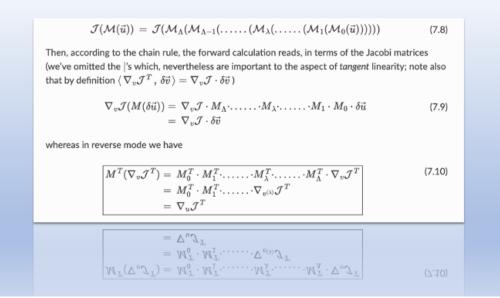
Differentiable programming in Julia for Earth system modeling

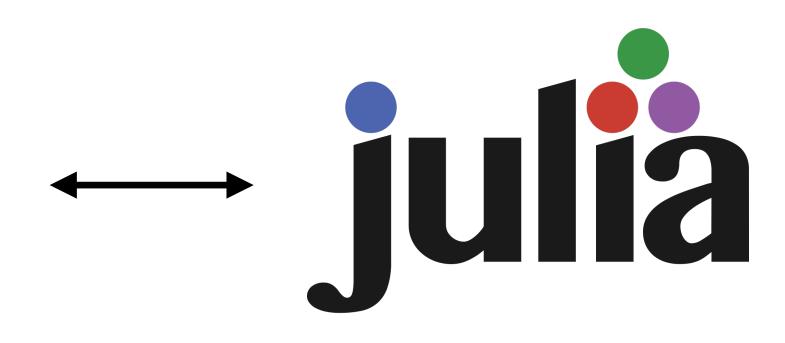
https://dj4earth.github.io/

Earth system flagship applications



Outlook





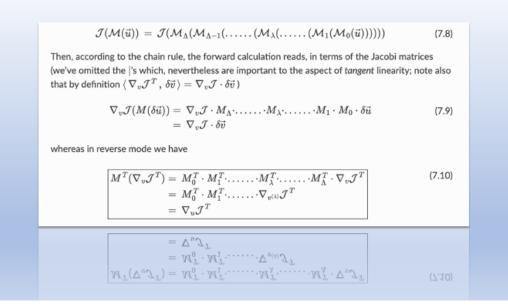
Ocean GCM

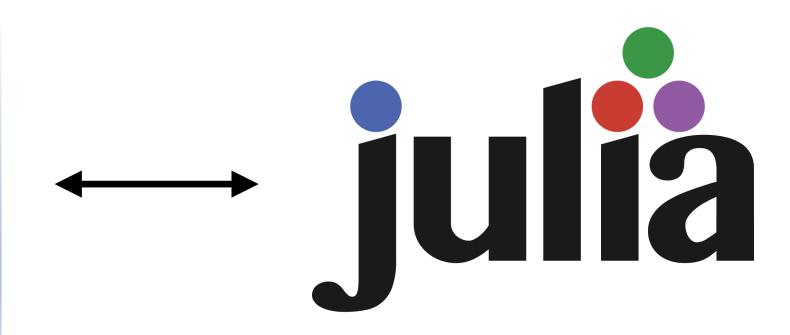
Julia:

Physics model (PDE) & its adjoint

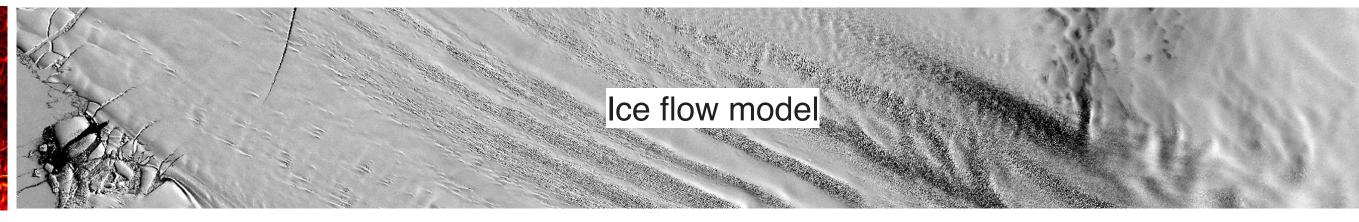
Seamless integration Seamless integration

Outlook





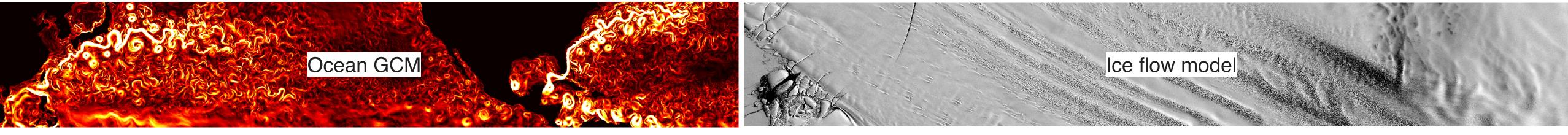
Earth system flagship applications



Goal: Advance automatic differentiation (AD) to generate adjoint and back-propagation operators in Earth system models

Earth system model

Machine Learning (ML) & differentiable programming



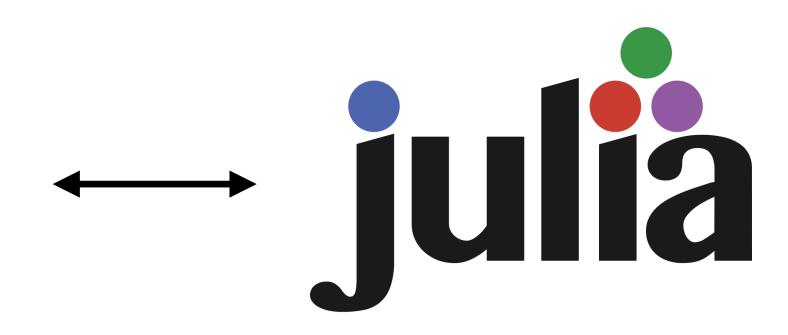
Julia:

Physics model (PDE) & its adjoint

Seamless integration Seamless integration

Hybrid approaches:

- Derivative- and physics-informed ML



Goal: Advance automatic differentiation (AD) to generate adjoint and back-propagation operators in Earth system models

Earth system model

Machine Learning (ML) & differentiable programming

• ML-accelerated sampling for non-Gaussian UQ

