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Idea: 

Overturning in the Subpolar North Atlantic Program (OSNAP) 
http://www.o-snap.org 
Lozier et al., 2019

… are crucial for understanding the ocean’s role in climate

… but are difficult & expensive to build and maintain 

• Use oceanic teleconnections that propagate 
observational constraints over long distances 
and can be exposed via the adjoint state


• Combine adjoint-based estimation framework 
with Hessian-based uncertainty quantification

How can ocean models inform observing system design?

Quantitative design of ocean observing systems

http://www.o-snap.org


linear adjustment processes:  

• oceanic Kelvin & Rossby waves


• exposed by the adjoint state as 
"time-reversed" waves, 
reflecting the sensitivity of a 
Quantity of Interest (QoI) to 
perturbations, (here: volume 
transport across 26N)


back in time, and 

anywhere in space


Johnson & Marshall, J.Phys. Oceanogr. (2002) 
Heimbach et al. Deep Sea Res. (2011) 

Pillar et al., J. Clim. (2016)

Oceanic teleconnections
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Leverage adjoint-based  
data assimilation 

framework: 
ECCO

Algorithmic approach



Uncertainty Quantification (UQ) 
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(UQ1): Inverse uncertainty propagation 
From prior to posterior uncertainty



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(a) (b)

data-informed
direction vi

control space

Jmisfit(ũ)
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Figure 2. (a),(b) Curvature of the nondimensionalized model-data misfit function, Jmisfit(u),

at the cost function minimizer umin, along two directions in the control space: (a) the data-

informed direction vi (eq. (3)) and (b) a non-informed direction. (c) The direction of interest, q

(eq. (10)), decomposed into q = qobs + qnull. The data-informed component, qobs, is the pro-

jection of q onto the data-informed subspace. Parts of the unit sphere of the control space are

displayed in black. The larger the radius of the orange dashed circle, defined by the length of

qobs, the higher the dynamical proxy potential of the considered observing system for the QoI.

–7–

Uncertainty Quantification (UQ) 

⇡post(u|y) / e�J(u) ⇡ N (umin,H
�1
J )

HJ ⇡
MX

i=1

�iviv
T
i

1

(UQ1): Inverse uncertainty propagation 
From prior to posterior uncertainty

Hessian of cost function J

Thacker, 1989
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Figure 1. Workflow for Hessian uncertainty quantification (UQ) in ocean state estimation.

Starting from an observing system (gray box), inverse uncertainty propagation along path (UQ1)

reduces the uncertainty in the control variables (green box), see section 2.2. A subsequent for-

ward uncertainty propagation along path (UQ2) reduces the uncertainty in a chosen quantity

of interest (QoI, purple box), see section 2.3. Green and black arrows indicate propagation of

prior and posterior uncertainty, respectively. The degree to which the observing system reduces

uncertainty in the QoI, via a composite uncertainty propagation along paths (UQ1) and (UQ2),

is referred to as the observing system’s proxy potential for the QoI (section 2.4).
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(UQ2): Forward uncertainty propagation 
From posterior to QoI uncertainty
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ũmin

curvature = 0

(c)

data-informed subspace

1

control space

nullspace

qobs

qnull

q

Figure 2. (a),(b) Curvature of the nondimensionalized model-data misfit function, Jmisfit(u),

at the cost function minimizer umin, along two directions in the control space: (a) the data-

informed direction vi (eq. (3)) and (b) a non-informed direction. (c) The direction of interest, q

(eq. (10)), decomposed into q = qobs + qnull. The data-informed component, qobs, is the pro-

jection of q onto the data-informed subspace. Parts of the unit sphere of the control space are

displayed in black. The larger the radius of the orange dashed circle, defined by the length of

qobs, the higher the dynamical proxy potential of the considered observing system for the QoI.

–7–

Uncertainty Quantification (UQ)

⇡post(u|y) / e�J(u) ⇡ N (umin,H
�1
J )

HJ ⇡
MX

i=1

�iviv
T
i

1

MX

i=1

�i

�i + 1
(q • vi)

2 2 [0, 1)

q = (�B
QoI)

�1BT/2ruQoI

q =
BT/2 ruQoI��BT/2 ruQoI

��

1

(UQ1): Inverse uncertainty propagation

(UQ2): Forward uncertainty propagation

MX

i=1

�i

�i + 1
(q • vi)

2 2 [0, 1)

q = (�B
QoI)

�1BT/2ruQoI

q =
BT/2 ruQoI��BT/2 ruQoI

��

1

where

Hessian of cost function J

Thacker, 1989

Loose & Heimbach, 2021 Observing system for QoI chosenis optimal

0 1
provides no
new constraints

Uncertainty reduction in  quantity of interest (QoI)  by  observing system:QoI = Quantity of Interest 
AMOC, ocean transports, 

future regional sea level

8/15



Heat transport across the

Iceland-Scotland Ridge (ISR)

Sensitivity to meridional wind stress τy

Irminger Sea subsurface temperature 
(observed by OSNAP)

manuscript submitted to JGR: Oceans
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Figure 4. (a)-(c): Sensitivities of five-year mean (a) subsurface temperature in the Irminger

Sea (✓A), (b) subsurface temperature o↵ the Portuguese coast (✓B), and (c) surface temperature

in the Irminger Sea (✓C) to changes in five-year mean upward surface heat flux Qnet,". (d)-(f):

Same as (a)-(c), but sensitivities to meridional wind stress ⌧y. The sensitivities are weighted and

normalized, and assemble the vector v?
(eq. (11)). Red (blue) colors indicate that an increase

in (a),(b),(c) heat loss to the atmosphere and (d),(e),(f) northward wind stress would lead to a

subsequent increase (decrease) in (a),(d) ✓A, (b),(e) ✓B , and (c),(f) ✓C on a five-year time scale.

The yellow dots mark the respective locations of the temperature observation. The bar charts in

(g)-(i) show the relative contributions of Qnet,", EPR, ⌧x and ⌧y to (g) ✓A, (h) ✓B , and (i) ✓C

sensitivity, computed as in Fig. 3.
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Sensitivity maps identify shared adjustment mechanisms & pathways

Computed with 
MITgcm adjoint 

model




(normalized & weighted)

∂θOSNAP
τy(x, y)




(normalized & weighted)

∂(HTISR)
τy(x, y)

Loose et al., 2020
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Sensitivity maps re-interpreted in the context of UQ
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Computing  (q ∙ v1)

(q ∙ v1) = ( [q ∙ v1]+ + [q ∙ v1]− + [q ∙ v1]0 )



Uncertainty reduction via oceanic teleconnections
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Uncertainty reduction via oceanic teleconnections
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•  Shared adjustment mechanisms lead to large uncertainty reduction 
•  BUT: destructive interference is possible
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Figure 6. (a)-(c): Replots of subpanels of Fig. 5, as indicated by the gray labels. The black

boxes (I) and (II) contain the dominant sensitivity patterns that are the main origins of proxy

potential for HTISR (see Section 3.2.1). (d),(e): Modified maps from (b),(c), as a result of ex-

tracting independent sensitivity information from the observation ✓A and ✓?, for (d) ? = B,

(e) ? = D. The modified sensitivity maps are the ⌧y component of (v?)?, computed as linear

combinations of v
A and v

?, as shown in (g),(h). (f) Three-dimensional subspace of the control

space that is informed by the triple {✓A, ✓B , ✓D}. (g),(h) Planes embedded in (f), showing the

two-dimensional subspaces informed by the pairs (g) {✓A, ✓B} and (h) {✓A, ✓D}. The planes are

spanned by (g) v
A and v

B , with enclosed angle � = 74 �, and (h) v
A and v

D, with enclosed

angle � = 30 �. Orthonormalizing the pair {vA,v?} results in (g) (vB)? and (h) (vD)?.
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No actual data needed          can test future observing systems  

Assessing data redundancy
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Removal of 
redundant 
information

Orthonormalization 
(Hessian eigenvectors 


are orthonormal)

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Irminger Sea (✓A)

(a) Fig. 5(b)

vA
|⌧y

(I)

(II)

Portuguese Coast (✓B)

(b) Fig. 5(c)

vB
|⌧y

(I)

Denmark Strait (✓D)

Fig. 5(e)(c)

vD
|⌧y

(I)

(II)

(Portuguese Coast)?

(d)

(vB)?
|⌧y

(Denmark Strait)?

(e)

(vD)?
|⌧y

(f)

vA

vB
(vB)?

�

(g)

vA

vD

(vD)?

�

(h)

Figure 6. (a)-(c): Replots of subpanels of Fig. 5, as indicated by the gray labels. The black

boxes (I) and (II) contain the dominant sensitivity patterns that are the main origins of proxy

potential for HTISR (see Section 3.2.1). (d),(e): Modified maps from (b),(c), as a result of ex-

tracting independent sensitivity information from the observation ✓A and ✓?, for (d) ? = B,

(e) ? = D. The modified sensitivity maps are the ⌧y component of (v?)?, computed as linear

combinations of v
A and v

?, as shown in (g),(h). (f) Three-dimensional subspace of the control

space that is informed by the triple {✓A, ✓B , ✓D}. (g),(h) Planes embedded in (f), showing the

two-dimensional subspaces informed by the pairs (g) {✓A, ✓B} and (h) {✓A, ✓D}. The planes are

spanned by (g) v
A and v

B , with enclosed angle � = 74 �, and (h) v
A and v

D, with enclosed

angle � = 30 �. Orthonormalizing the pair {vA,v?} results in (g) (vB)? and (h) (vD)?.
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ũmin non-informed
direction

control space

Jmisfit(ũ)
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Figure 2. (a),(b) Curvature of the nondimensionalized model-data misfit function, Jmisfit(u),

at the cost function minimizer umin, along two directions in the control space: (a) the data-

informed direction vi (eq. (3)) and (b) a non-informed direction. (c) The direction of interest, q

(eq. (10)), decomposed into q = qobs + qnull. The data-informed component, qobs, is the pro-

jection of q onto the data-informed subspace. Parts of the unit sphere of the control space are

displayed in black. The larger the radius of the orange dashed circle, defined by the length of

qobs, the higher the dynamical proxy potential of the considered observing system for the QoI.
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Oceanic teleconnections Uncertainty Quantification (UQ)

Dynamics-informed & quantitative observing system design
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Shared adjustment mechanisms

Adjoint model

Loose et al., JGR Oceans (2020) Loose & Heimbach, JAMES (2021)

Oceanic teleconnections Uncertainty Quantification (UQ)

Limitation: Adjoint only provides linearized approximation of ocean dynamics

Appropriate for: Large-scale dynamics and Gaussian approximation of uncertainty

Outlook: How to deal with very nonlinear dynamics & implied uncertainty?

Dynamics-informed & quantitative observing system design
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Machine Learning (ML) &
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& its adjoint

Outlook

Goal: Advance automatic differentiation (AD) to generate adjoint and back-propagation operators in Earth system models

Earth system flagship applications 

Ice flow modelOcean GCM

Earth system model

Differentiable programming in Julia for Earth system modeling
:
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Outlook

Hybrid approaches:
• ML-accelerated sampling for non-Gaussian UQ
• Derivative- and physics-informed ML

Earth system flagship applications 

Ice flow modelOcean GCM

Differentiable programming in Julia for Earth system modeling
:

https://dj4earth.github.io/

15/15

Goal: Advance automatic differentiation (AD) to generate adjoint and back-propagation operators in Earth system models

Julia: Earth system model
Seamless integration

Physics model (PDE)
& its adjoint

Machine Learning (ML) &
differentiable programming


